COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

(Abstract)

Faculty of Technology - Programmes offered at the international School of Photonics - Resolution of the Academic Council - Communicated - Orders issued.

ACADEMIC A SECTION

No.CUSAT/AC(A).A3/4084/2024

Dated,KOCHI-22,26.09.2024

Read:-Item No. I (f) (4) of the minutes of the meeting of the Academic Council held on 30.04.2024

<u>ORDER</u>

The Academic Council considered along with the recommendations of it's standing committee, the Minutes of the Faculty of Technology held on 08.04.2024 and resolved to approve the following :

- i. The Curriculum and Syllabus for the Four-Year Under Graduate programme (FYUGP) in Photonics as part of the Five-Year Integrated Post Graduate Programme (FYIPGP) in Photonics with effect from 2024 admissions (Appendix I).
- ii. The Revised Scheme and Syllabus for M.Tech Optoelectronics and Laser Technology from 2024 admission (Appendix II).
- iii. Modification in Curriculum of M.Sc Photonics (5 year Integrated) 2023 admission to align it to that of FYIPG programme for the 2024 admissions, to the maximum possible extent and the syllabus for the semesters 3-10 for M.Sc Photonics (5 year Integrated) from 2023 admission (Appendix III).

Orders are issued accordingly.

Dr. Arun A U * Registrar

To:

- 1. The Dean, Faculty of Technology
- 2. Chairperson, BoS under Faculty of Technology
- 3. The Director, International School of Photonics
- 4. All AR/DR Examination wing with a request to forward to concerned sections
- 5. The Director, IQAC/ DoA
- 6. CIRM/Conference Sections
- 7. PS To VC/PVC;PA To Registrar/CE.

* This is a computer generated document. Hence no signature is required.

INTERNATIONAL SCHOOL PHOTONICS (ISP)

COURSE STRUCTURE AND SYLLABI

of

Master of Science (Five Year Integrated) in Photonics

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI - 682 022

2024

MSc in Photonics (Five-Year Integrated)

Programme Structure (2024 Admission Onwards)

Vision

To be an Institute of Eminence creating global leaders and innovators in the emerging field of lightbased technologies to meet the social challenges of today and the future.

Mission

- > To impart quality education that equip students through rigorous training towards meeting the needs of society and industry.
- To provide state-of-the-art facilities to undertake research activities relevant to light-based industries and promote entrepreneurship.
- > To collaborate with premier academic and research institutes around the globe to fortify the education and research environment.

Program Outcomes: Integrated M.Sc.

PO1: Demonstrate a comprehensive understanding of fundamental principles and concepts in basic sciences.

PO2: Analyze, evaluate, and synthesize complex scientific information and data using appropriate methods and techniques.

PO3: Apply scientific reasoning and critical thinking adeptly to recognize, assess, and resolve problems encountered in various scientific contexts.

PO4: Utilize computational power, programming languages, and modern technologies proficiently to address scientific challenges, effectively integrating technological solutions into problem-solving processes.

PO5: Communicate scientific information effectively and demonstrate proficiency in the use of modern scientific tools and technologies for experimentation, data collection, analysis, and interpretation.

PO6: Adhere to ethical principles and practices in the conduct of scientific research and professional activities, and work collaboratively with others.

PO7: Engage in lifelong learning and professional development to enhance the knowledge and skills in basic sciences.

Program Specific Outcomes

- PSO1: Acquire sufficient knowledge in the areas of mechanics, electronics, electrodynamics, quantum technologies, mathematics, optics, and laser physics.
- PSO2: Enhance knowledge in various domains of photonics through specific courses.
- PSO3: Foster skills in communication, presentation and scientific writing.

- PSO4: Develop proficiency in experimentation, data acquisition and interpretation in advanced topics of physics and optics.
- PSO5: Attain knowledge in mathematical tools, modelling and simulations using scientific software packages.
- PSO6: Execute projects in advanced topics of photonics to acquire expertise in problem solving skills.
- PSO7: Familiarise with modern equipment and complex tools employed in photonics research.
- PSO8: Address the societal needs through outreach programmes and extension activities.

	Numb	er of cours	ses offered	l by the dep	artment		
Semester	Major 4 credits	Minor 4 credits	MDC 3 credits	AEC 3 credits	SEC 3 credits	VAC 3 credits	Total credits
I	1	2	1	2*			21
II	1	2	1	2*			21
III	1	2	1			2*	21
IV	4				1	1*	22
v	5				1		23
VI	5				1		23
		Internshi	p**				2
Total credits/co urses	68 (17)	24 (6)+3 (SEC)	9 (3)	12 (4)	9 (3)	9 (3)	133
**Not count	fered by the Center ted as a course Sc in Photonics (Tot			es, CUSAT			
VII	4 Courses + seminar/open ended labs/online course (2 credits)	1					22

MSc Photonics Scheme (2024 Admission onwards)

	1 Course + seminar/open ended labs/online (2 credits)									
	+ Project (12 credits)									
VIII	Or	1					22			
	3 Major Courses + Mini project (4 credits) + seminar/open ended labs/online course (2 credits)									
Total credits/co urses	Hon. (Research): 104 (24 + Project) Hon. : 104 (26 + Mini Project)	32 (8)+3 (SEC)	9 (3)	12 (4)	9 (3)	9 (3)	177			
	Sc (Honours with Re Sc (Honours) in Pho				its = 177)		<u> </u>			
IX	5 Courses + online (2 credit**)						20-24			
Х	Major project + online (2 credit**)						20-24			
Total credits	148	32 (8)+3 (SEC)	9 (3)	12 (4)	9 (3)	9 (3)	221			
	<pre>** Instead of taking two online courses worth 2 credits each, a student can opt for one online course worth 4 credits in the ninth/tenth semester. In such cases, the credits earned in that</pre>									

semester will be 24, and in the other semester, they will be 20.

Exit with MSc in Photonics (Total credits = 221)

MDC: Multi-Disciplinary Courses AEC: Ability Enhancement Courses SEC: Skill enhancement Courses

VAC: Value Added Courses

Academic pathways offered by International School of Photonics

Photonics Major:

3-year UG Program: To earn a Photonics Major in a 3-year UG Program, a student must complete a minimum of 68 credits in Photonics, out of which 60 credits shall be from DSC courses and 8 credits from DSE courses.

4-year UG Program (Honours): To earn a Photonics Major in a 4-year UG Program (Honours), a student must complete a minimum of 104 credits in Photonics, out of which 84 credits (including 4 credits from a research project) shall be from DSC courses and 20 credits from DSE courses.

4-year UG Program (Honours with Research): To earn a Photonics Major in a 4-year UG Program (Honours with Research), a student must complete a minimum of 104 credits in Photonics, out of which 88 credits (including 12 credits from a research project) shall be from DSC courses and 16 credits from DSE courses.

5-Year Integrated MSc in Photonics: To earn a 5-Year Integrated MSc in Photonics, a student must complete a minimum of 148 credits in Photonics including 20 credits from a major project.

Photonics Minor:

3-year UG Program: To earn a Minor in Photonics in a 3-year UG Program, a student must complete a minimum of 27 credits in Photonics, out of which 24 credits shall be from DSC courses and 3 credits from an SEC elective.

4-year UG Program: To earn a Minor in Photonics in a 4-year UG Program, a student must complete a minimum of 35 credits in Photonics, out of which 24 credits shall be from DSC courses and 3 credits from an SEC elective 8 credits from DSE courses.

Discipline mention in Photonics:

To earn a Discipline mention in Photonics in a UG Program (3 or 4 years), a student must complete a minimum of 12 credits in Photonics from DSC courses.

Lateral entry

Lateral entry to the 7th semester shall be permitted for students who have successfully completed BSc in Photonics subject to the availability of seats, as per the rules and regulations of the University.

Lateral entry to the 9th semester shall be permitted for students who have successfully completed BSc (Honours)/ BSc (Honours with Research) in Photonics subject to the availability of seats, as per the rules and regulations of the University.

<u>Scheme</u>

Semester I

			The course can be	Credits	Hours/ week	Mark	s distri	ibution
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P	CA	ESE	Total
24-812-0101	Optics I: Geometrical and Physical Optics	100	Photonics Major -DSC, Photonics Minor-DSC, Photonics Disci-DSC	4	3-0-2	50	50	100
24-812-0102	Introduction to Photonics	100	Photonics Minor-DSC, Photonics Disci-DSC	4	4-0-0	50	50	100
24-812-0103	General Optics	100	MDC	3	3-0-0	50	50	100
Semester Credits for Photonics Major		21 (AE	C: 6, MDC: 3, Major pathwa Cumulative crec	5	pathway:	3)	1	

L: Lecture, T: Tutorial, P: Practicum

Photonics Major-DSC: Core course for students Majoring in Photonics.

Photonics Minor-DSC: Core course for students Minoring in Photonics.

Photonics Disci-DSC: Core course for students who choose discipline mention in Photonics.

Photonics-MDC: Multidisciplinary elective course offered to students whose Major or Minor pathways are different from Photonics.

AEC: Ability Enhancement Course (Languages).

MDC: Multidisciplinary Course.

Semester II

			The course can be	Credits	Hours/ week	Marks distributio		
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P	СА	ESE	Total
24-812-0201	Mathematical Physics I	100	Photonics Major -DSC, Photonics Minor-DSC, Photonics Disci-DSC	4	3-0-2	50	50	100
24-812-0202	Applied Optics	100	Photonics Minor-DSC, Photonics Disci-DSC	4	4-0-0	50	50	100
24-812-0203	Mathematical Methods	100	Photonics MDC	3	3-0-0	50	50	100
Semester Credits for Photonics Major		21 (AE	C: 6, MDC: 3, Major pathwa Cumulative crec		r pathway: 8	8)		

Semester III

			The course can be	Credits	Hours/ week	Mark	s distr	ibution
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P	CA	ks distr ESE 50 50 50 50	Total
24-812-0301	Mechanics	200	Photonics Major -DSC, Photonics Minor-DSC, Photonics Disci-DSC	4	3-0-2	50	50	100
24-812-0302	Nano-Bio photonics	200	Photonics Minor-DSC, Photonics Disci-DSC	4	4-0-0	50	50	100
24-812-0303	Basic Mechanics	200	Photonics MDC	3	3-0-0	50	50	100
Semester Credits for Photonics Major		21 (VA	C: 6, MDC: 3, Major pathwa Cumulative crea	5	r pathway:	8)		

Semester IV

Course Code	Course Name	Level	The course can be taken towards	Credits	Hours/ week	Mark	s distr	ibution
course coue	course name	Level	obtaining credits for:		L-T-P	CA	ESE	Total
24-812-0401	Thermal and Statistical Physics	200	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0402	Mathematical physics II	200	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0403	Electronics	200	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0404	Quantum mechanics I	200	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0405	General Photonics Lab	200	Photonics Major SEC, Photonics Minor-SEC,	3	0-0-6	100		100
Semester			22 (MAC 2 CEC 2 Main		1()			
Credits for Photonics			22 (VAC: 3, SEC: 3, Majo Cumulative crea	1 5	16)			
Major								

Semester V

Course Colo	Course Norma	T and I	The course can be	Credits	Hours/ week	Mark	s distri	ibution
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P	CA	ESE	Total
24-812-0501	Quantum Mechanics II	300	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0502	Electrodynamics	300	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0503	Spectroscopy	300	Photonics Major -DSC, Photonics Minor-DSC, Photonics Disci-DSC	4	4-0-0	50	50	100
24-812-0504	Optics II: Applied Optics	300	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0505	Elective I: MOOC*	300	Photonics Major -DSE	4	4-0-0		100	100

24-812-0506	General Physics Lab	300	Photonics Major -SEC	3	0-0-6	100		100
Semester Credits for			23 (SEC: 3, Major pa	thway: 20)				
Photonics			Cumulative cred	its: 108				
Major	NOC (1 course of 4 credite / 2 courses of 2 credite)							

* 24-812-0505 MOOC (1 course of 4 credits/2courses of 2 credits)

Semester VI

Course Code	Course Name	Level	The course can be	Credits	Hours/ week	Mark	s distr	ibution
Course Code	course name	Level	taken towards obtaining credits for:		L-T-P	CA	Ks distr ESE 50 50 50 50 50 50 50	Total
24-812-0601	Laser Physics	300	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0602	Fiber Optics	300	Photonics Major -DSC Photonics Minor-DSC, Photonics Disci-DSC	4	4-0-0	50	50	100
24-812-0603	Computational Methods in Optics and Photonics	300	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0604	Optical Instrumentation	300	Photonics Major -DSC	4	3-0-2	50	50	100
24-812-060X	Elective II	300	Photonics Major -DSE	4	3-0-2	50	50	100
24-812-0605	Computational Lab	300	Photonics Major -SEC	3	0-0-6	100		100
Semester Credits for Photonics Major			23 (SEC: 3, Major pa Cumulative cred					

List of Electives II

24-812-0606 Optical Sensor Technology

24-812-0607 Photonic Crystals and Optical Metamaterials

24-812-0608 Fourier Optics & Optical Signal Processing

Internship

Students have to complete an internship of 2 credits (60 Hours of work) before the beginning of Semester VII. Cumulative Credits: 133

Exit with 3-year UG Degree OR continue to the 4th year.

Semester VII

			The course can be	Credits	Hours/ week	Mark	s distr	ibution
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P-S	CA	ESE	Total
24-812-0701	Optoelectronics	400	Photonics Major -DSC, Photonics Minor-DSE, Photonics Disci-DSC	4	3-0-2	50	50	100
24-812-0702	Condensed Matter Physics	400	Photonics Major -DSC	4	4-0-0	50	50	100
24-812-0703	Photonics Lab 1 and Seminar	400	Photonics Major -DSC	4	0-0-6-1	100 +50		100+ 50
24-812-0704	Open ended lab	400	Photonics Major -DSC	2	0-0-4	50		50
24-812-070X	Elective III	400	Photonics Major -DSE Photonics Minor-DSE, Photonics Disci-DSC	4	4-0-0	50	50	100
Semester Credits for Photonics Major			22 (Major pathway: 18, M Cumulative cred		7ay 4)			

S: Seminar

List of Electives III

24-812-0705 Non-Linear Optics

24-812-0706 Nanophotonics

24-812-0707 Laser spectroscopy

24-812-0708 Quantum Optics & Quantum Computing

24-812-0709 Advanced Electromagnetic Theory

Semester VIII

For Honours with Research

	6 N		The course can be	Credits	Hours/ week	Mark	s distri	ibution
Course Code	Course Name	Level	taken towards obtaining credits for:		L-T-P-S	CA	ESE 100	Total
24-812-0801	Elective IV: MOOC II	400	Photonics Major -DSE	4			100	100
24-812-0802	Project	400	Photonics Major -DSC	12	0-0-24	300		300
24-812-0803	Seminar	400	Photonics Major -DSC	2	0-0-0-2	100		100
Semester Credits for Photonics Major			22 (Major pathway: 18, M Cumulative cred		vay 4)			

For Honours

Course Code	Course Name	Level	The course can be taken towards	Credits	Hours/ week	Mark	s distr	ibution
course coue	course name	Level	obtaining credits for:		L-T-P-S	CA	ESE	Total
24-812-0804	Mini Project	400	Photonics Major -DSC	4	0-0-8	100		100
24-812-0805	Photonics lab 1	400	Photonics Major -DSC	4	0-0-8	100		100
24-812-0801	Elective IV: MOOC II	400	Photonics Major -DSE	4	4-0-0		100	100
24-812-0803	Seminar	400	Photonics Major -DSC	2	0-0-0-2	100		100
24-812-080X	Elective V	400	Photonics Major -DSE, Photonics Minor-DSE, Photonics Disci-DSC	4	3-0-2	50	50	100
Semester Credits for Photonics Major		·	22 (Major pathway: 18, M Cumulative cred	1	vay 4)			

List of Electives IV

MOOC courses preferably on Optical Communication or Solar Cells

List of Electives V

24-812-0806 Optomechanical Engineering

24-812-0807 Laser Systems and Laser Applications

24-812-0808 Biophotonics

Exit with 4-year UG Degree OR continue to the 5th year.

Semester IX

Course Code	Course Name	Level	The course can be taken towards	Credits	Hours/ week	Marks distribution			
course coue	course name	Level	obtaining credits for:		L-T-P	CA	ESE	Total	
24-812-0901	Industrial Photonics	500	Photonics Major -DSC	4	4-0-0	50	50	100	
24-812-0902	Photonics lab 2	500	Photonics Major -DSC	4	0-0-8	100		100	
24-812-0903	Elective VI: MOOC III**	500	Photonics Major -DSE	2			100	100	
24-812-090X	Elective VII	500	Photonics Major -DSE, Photonics Minor-DSE	4	4-0-0	50	50	100	
24-812-090X	Elective VIII	500	Photonics Major -DSE, Photonics Minor-DSE	4	4-0-0	50	50	100	
24-812-090X	Elective IX	500	Photonics Major -DSE	4	4-0-0	50	50	100	
Semester Credits for Photonics Major		22 (Major pathway: 22) Cumulative credits: 199							

List of Electives VII-IX

24-812-0904 Quantum Communications

24-812-0905 Ultrafast Photonics

24-812-0906 Plasma Physics

24-812-0907 Microscopic Techniques

Semester X

Course Code	Course Name	T and I	The course can be	Credits	Hours/ week	Marks distribution		
Course Code		Level	taken towards obtaining credits for:		L-T-P	СА	ESE	Total
24-812-1001	Major Project	600	Photonics Major -DSC	20	0-0-40	600		600
24-812-1002	Elective X: MOOC IV**	500	Photonics Major -DSE	2			100	100
Semester Credits for Photonics Major	22 (Major pathway: 22) Cumulative credits: 221							

**Instead of taking the online course worth 2 credits, a student has the option to select one online course worth 4 credits in the ninth/tenth semester. In such cases, the credits earned in that semester will total 24. Consequently, they won't need to enrol in the MOOC course in the other semester, and the maximum credits for that semester will be 20.

Question paper pattern for end semester examination

The following Question paper pattern will be followed for semester end assessment.

Section I

Short answer questions 6 out of 6 (3 marks x 6 =18 marks). No choices will be provided in this section. at least one question from each module should be asked. Additional 2 questions may be asked from modules with more teaching hours.

Section II

1 out of 2 from each module (8 marks x 4 =32 marks)

Detailed Syllabus

СО	CO Statement	CL	Class Hrs	Lab Hrs			
C01	Understand the concept of radiometry and photometry.	Understand	5	4			
CO2	Explain the principles of colourimetry, chromaticity coordinates and human colour vision.	Understand	6	4			
CO3	Apply matrix methods in optics.	Apply	6	2			
C04	Interpret various types of aberration and dispersion phenomena in optical system	Apply	6	4			
C05	Explain the interference phenomena by division of wavefront and division of amplitude.	Understand	5	4			
C06	Describe the concept of coherence and superposition in optics	Understand	6	4			
C07	Analyse the principles of thin film interference.	Apply	5	4			
C08	Analyse various systems based on the principle of interference.	Apply	6	4			
	Total Number of Hours						

23-812-0101 Optics I: Geometrical and Physical Optics (Level 100)

CO-PSO Mapping

- 1	FO							
	CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
	C01	3	1	1	3			
	CO2	3	1	1	3			
	CO3	3	1	1	3			
	CO4	3	1	1	3			
	C05	3	1	1	3			
	C06	3	1	1	3			
	C07	3	1	1	3			
	C08	3	1	1	3			

3-High; 2-Medium; 1-Low

Module I

Photometry and Radiometry- quantities and units, Colourimetry- chromaticity coordinates, UCS chromaticity coordinates, UCS diagrams, RGB colour mixing and colour purity, colour temperature, CCT, Visual basis of colourimetry, Human eye and colour deficiency, colour vision model.

Module II

Optical path, Fermat's principle, Dispersion- normal and anomalous dispersion, Wood's experiment, achromatism in prisms, dispersion without deviation.

Aberrations- Spherical aberration, coma, astigmatism, distortion, chromatic aberration.

Matrix methods in Optics- Paraxial rays, Matrix representation of translation, refraction, reflection of light rays, ABCD law, lens waveguide.

Module III

Superposition of two sinusoidal waves, path difference and phase difference, Analytical and graphical methods. Coherent sources, spatial and temporal coherence, complex representation of light waves, Interference of two monochromatic waves, optical beats.

Theory of interference and bandwidth, Interference by division of wave front, Young's double slit experiment, Fresnel's bi-prism, Lloyd's mirrors.

Module IV

Interference by division of amplitude, two beam interference, parallel sided plates, colour of thin films, wedge shaped film, Haidinger and Fizeau fringes, Newton's rings - reflected and transmitted systems, Radius of rings and expression for wavelength, Michelson interferometer, Determination of wavelength separation and standardization of meter. Types of fringes- localized and non-localised fringes in white light.

- 1. Optics, Ajoy Ghatak, 7th Edition, Tata McGraw Hill, (2020) (Text)
- 2. A Textbook of Optics, N Subrahmaniam and Brij Lal, M N Avadhanulu, S Chand and
- 3. Company, 23rd Edition, (2006) (Text)
- 4. Handbook of Applied Photometry, C De Cusatis, AIP. (1997) (Text)
- 5. Light emitting diodes- E Fred Scheubert, Cambridge University Press (2006)
- 6. Modern Optics, A B Gupta, Books & Allied Ltd; 4th Revised edition (2013)
- 7. Optics, Eugene Hecht and A R Ganesan, 5th Edition, Pearson Education (2017)
- 8. Fundamentals of Optics, Jenkins and White, McGraw Hill Education, 4th edition (2017)
- 9. Wave optics and applications, R.S Sirohi, Orient Longman, (1993)

24-812-0102 Introduction to Photonics

(Level 100)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the basic properties of photons and how photons interact with atoms.	Understand	7	0
CO2	Understand the concept of photonics, its application and recent advancement in the field of photonics.	Understand	8	0
CO3	Understand the concept of LASER and lasing action, spectral width and gain of the laser.	Understand	6	0
CO4	Understand the different types of LASER and its application in the field of photonics.	Understand	9	0
C05	Understand the history and basic concept of light propagation through the optical fiber.	Understand	7	0
C06	Understand the construction of optical fiber, its types, transmission characteristics and fundamentals of communication system.	Understand	7	0
C07	Understand the basics and principles of holography and its recording and reconstruction.	Understand	8	0
C08	Understand the difference between holography and ordinary photography and its application in the current scenario.	Understand	8	0
	Total Number of Hours	60	0	

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1					
CO2	3	3	1					
CO3	3	3	1					
CO4	3	3	1					
CO5	3	3	1					
C06	3	3	1					
C07	3	3	1					
C08	3	3	1					

3-High; 2-Medium; 1-Low

Module I

Photon, properties of photon, Interaction of photons with atoms: energy loss mechanismsphotoelectric effect, Compton scattering, pair production, linear attenuation coefficient, mass attenuation coefficient.

Introduction to photonics, applications of photonics, recent advancement in the field of photonics.

Module II

LED and LASER, advantages of LASER over LED, spontaneous and stimulated emissions, Einstein coefficients, rates of stimulated emission and absorption, condition for amplification by stimulated

emission, meta-stable state and lasing action, spectral width of LASER, gain for self-sustained oscillations in the lasing cavity, LASER rate equation.

Examples of types of lasers: fiber laser, gas laser, tunable lasers: semiconductor lasers, Applications of lasers.

Module III

Introduction to optical fibre, historical development in the field of optical fibre, advantages, disadvantages, and applications of optical fibre communication, principle of light propagation in optical fibre, optical fibre fabrication, types of optical fibres: single mode and multimode fibres. Transmission characteristics of optical fibre: attenuation, absorption, scattering losses, bending loss, dispersion, intra modal dispersion, inter modal dispersion. Fundamentals of optical fiber communication systems.

Module IV

Holography-hologram, basic principle of holography, principle of hologram construction, construction of a hologram, recording and reconstruction of the image, comparison with ordinary photography, applications of hologram.

- 1. Photonics: Elements and Devices, V V Rampal, Wheeler, Delhi, 1992.
- 2. Introducing Photonics, Brian Culshaw, University of Strathclyde, Cambridge University press, 2020.
- 3. Fundamentals of Photonics, Bahaa E. A. Saleh, Malvin Carl Teich, Wiley, 1991.
- 4. Lasers: Fundamentals and Applications, K. Thyagarajan, Ajoy Ghatak, Springer New York, NY, 2010, 2nd edition.
- 5. An Introduction to Fiber Optics, Ajoy K. Ghatak, K. Thyagarajan, Cambridge University Press, 2012.
- 6. Three-dimensional holographic imaging, Chung J. Kuo, Meng Hua Tsai, John Wiley & Sons, 2002,

24-812-0103 General Optics

(Level 100)

СО	CO Statement	CL	Class	Lab
co	co statement	CL	Hrs	Hrs
C01	Understand the concept of radiometry and	Understand	5	0
001	photometry.	onderstand	5	U
C02	Explain the principles of colourimetry, chromaticity	Understand	6	0
02	coordinates and human colour vision.	onderstand		0
CO3	Apply matrix methods in optics.	Apply	6	0
C04	Interpret various types of aberration and dispersion	Apply	6	0
604	phenomena in optical system	Арріу	0	0
C05	Explain the interference phenomena by division of	Understand	5	0
205	wavefront and division of amplitude.	onderstand	5	0
C06	Describe the concept of coherence and superposition	Understand	6	0
200	in optics	onderstand	0	0
C07	Analyse the principles of thin film interference.	Apply	5	0
C08	Analyse various systems based on the principle of	Apply	6	0
000	interference.	Apply	U	U
	Total Number of Hours	45	0	

CO-PSO Mapping

11 0											
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7				
C01	3	1	1	3							
CO2	3	1	1	3							
CO3	3	1	1	3							
CO4	3	1	1	3							
CO5	3	1	1	3							
CO6	3	1	1	3							
C07	3	1	1	3							
CO8	3	1	1	3							
2 Uigh 2	2 High 2 Modium 1 Lour										

3-High; 2-Medium; 1-Low

Module I

Photometry and Radiometry- quantities and units, Colourimetry- chromaticity coordinates, UCS chromaticity coordinates, UCS diagrams, RGB colour mixing and colour purity, colour temperature, CCT, Visual basis of colourimetry, Human eye and colour deficiency, colour vision model.

Module II

Optical path, Fermat's principle, Dispersion- normal and anomalous dispersion, Wood's experiment, achromatism in prisms, dispersion without deviation.

Aberrations- Spherical aberration, coma, astigmatism, distortion, chromatic aberration.

Matrix methods in Optics- Paraxial rays, Matrix representation of translation, refraction, reflection of light rays, ABCD law, lens waveguide.

Module III

Superposition of two sinusoidal waves, path difference and phase difference, Analytical and graphical methods. Coherent sources, spatial and temporal coherence, complex representation of light waves, Interference of two monochromatic waves, optical beats.

Theory of interference and bandwidth, Interference by division of wave front, Young's double slit experiment, Fresnel's bi-prism, Lloyd's mirrors.

Module IV

Interference by division of amplitude, two beam interference, parallel sided plates, colour of thin films, wedge shaped film, Haidinger and Fizeau fringes, Newton's rings - reflected and transmitted systems, Radius of rings and expression for wavelength, Michelson interferometer, Determination of wavelength separation and standardization of meter. Types of fringes- localized and non-localised fringes in white light.

- 1. Optics, Ajoy Ghatak, 7th Edition, Tata McGraw Hill, (2020) (Text).
- 2. A Textbook of Optics, N Subrahmaniam and Brij Lal, M N Avadhanulu, S Chand and
- 3. Company, 23rd Edition, (2006) (Text).
- 4. Handbook of Applied Photometry, C De Cusatis, AIP. (1997) (Text).
- 5. Light emitting diodes- E Fred Scheubert, Cambridge University Press (2006).
- 6. Modern Optics, A B Gupta, Books & Allied Ltd; 4th Revised edition (2013).
- 7. Optics, Eugene Hecht and A R Ganesan, 5th Edition, Pearson Education (2017).
- 8. Fundamentals of Optics, Jenkins and White, McGraw Hill Education, 4th edition (2017).
- 9. Wave optics and applications, R.S Sirohi, Orient Longman, (1993)

24-812-0201 Mathematical Physics I

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the concepts of vector calculus and matrices.	Understand	8	0
CO2	Utilize vector calculus, matrix inversion and fundamental theorems of vector calculus to interpret physical phenomena effectively.	Apply	8	0
CO3	Understand differentiation of hyperbolic and inverse hyperbolic functions, and the application of Taylor's and McLaurin's theorems.	Understand	8	0
C04	Apply numerical techniques for integration, integration, polynomial fitting and interpolation.	Apply	6	0
C05	Understand curvilinear coordinates.	Understand	8	0
C06	Apply curvilinear coordinates for effectively representing mathematical operations like integrations and differentiations.	Apply	8	0
C07	Understand first order equations and partial differential equations.	Understand	8	0
C08	Apply numerical methods for solving differential equations.	Apply	6	0
	Total Number of Hours	60	0	

(Level 100)

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	2	1	1	2	1	1	
CO2	3	2	1	1	2	1	1	
CO3	3	2	1	1	2	1	1	
CO4	3	2	1	1	2	1	1	
C05	3	2	1	1	2	1	1	
C06	3	2	1	1	2	1	1	
C07	3	2	1	1	2	1	1	
C08	3	2	1	1	2	1	1	

3-High; 2-Medium; 1-Low

Module I

Vector calculus: vector differentiation, gradient, divergence and curl, solenoidal and irrotational vector point functions. Vector integration, line, surface and volume integration, Green's theorem, Gauss theorem and Stokes theorem, physical interpretations.

Matrices: orthogonal, symmetric, skew symmetric, Hermitian and skew Hermitian matrices, elementary transformations of a matrix. Similarity and unitary transformation of matrices, diagonalization of matrices, Eigenvalues and eigenvectors, Cayley-Hamilton theorem, solution of algebraic equations using matrices, consistent and inconsistent equations.

Module II

Differential calculus: differentiation of hyperbolic and inverse hyperbolic functions. Taylor's and Mclaurin's theorems, Application to expansion functions.

Partial differentiation: partial derivatives and total differential coefficients. Euler's theorem on homogeneous function, chain rule for partial derivatives, errors and approximations.

Numerical differentiation: first and second order derivatives.

Integral calculus: numerical integration: trapezoidal, Simpson's and Gaussian quadrature methods.

Least-square curve fitting: straight line and polynomial fits, Interpolation: Newton's and Lagrange's formulas

Module III

Curvilinear coordinates: description of curvilinear coordinate system, expression for square of distance element, metric-scale factors, differential distance vector, line integral, area element and area vector, volume element and volume integral, conversion of unit vectors in spherical and cylindrical coordinates into rectangular coordinates and vice versa.

Gradient, divergence, curl and Laplacian operators in curvilinear coordinate systems.

Module IV

Ordinary differential equations: first order equation, variables separable, homogeneous and nonhomogeneous equations, integrating factor, Bernoulli's equations, enact equations, second order linear differential equations with constant coefficients. Complementary function and particular integrals, solution using auxiliary equation.

Numerical solutions of ordinary differential equations: Euler's method and Runge-Kutta methods.

Partial differential equations: derivation of PDE by elimination of arbitrary constants and arbitrary coefficients. Concept of Jacobian. Solution of Lagrange's differential equations, Partial differential equation of the second degree, Laplace, Helmholtz and Poisson equations.

- 1. Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Academic Press, 2001 (Text).
- 2. Mathematical Methods in the Physical Sciences, 3rd. Ed., M. L. Boas, John Wiley, 2005 (Text).
- 3. Advanced Engineering Mathematics 10th Ed., Erwin Keryszig, Wiley, 2011 (Text).
- 4. Mathematical Methods for Physics and Engineering 3rd Ed., K. F. Riley, M. P. Hobson and S. J. Bence, Cambridge University Press, 2006 (Text).
- 5. Vector Analysis with an Introduction to Tensor Analysis Murray R Spiegel, Tata McGraw Hill (1975) Schaum Series (Text).
- 6. Differential Equations, Richard Bronson, Tata McGraw Hill, New Delhi, 1994 (Text).
- 7. Differential Equations and Linear Algebra, Stephen W. Goode and Scott A. Annin, Pearson, 2005 (Text)
- 8. Advanced Mathematics for Engineers Scientists, Murray R Spiegel, McGraw-Hill Education, 2009 (Text).
- 9. Matrices and Tensors for Physicists, A W Joshi, New Age International (1995)
- 10. Numerical Methods Balagurusamy, Tata McGraw Hill, 2001 (Text).
- 11. Introductory Methods of Numerical Analysis, 5th Ed., S. S. Sastry, Prentice Hall of India, 2012 (Text).
- 12. Differential Equations 3rd Ed., Shepley L. Ross, Wiley. 2007 (Text).
- 13. Introduction to Mathematical Physics, Harper Lee and Charlie Mackesy, Prentice Hall India, 1978.

24-812-0202 Applied Optics

(Level 100)

СО	CO statement	CL	Class Hrs	Lab Hrs
C01	Explain the basic concepts of diffraction, including Fresnel's assumptions and rectilinear propagation of light.	Understand	8	0
CO2	Apply the Fresnel-Kirchhoff integral and Fourier transform in analysing Fraunhofer and Fresnel diffractions.	Apply	7	0
CO3	Compare and contrast different types of gratings, including blazed gratings.	Analyse	7	0
CO4	Analyse the resolution and dispersive power of spectrographs and monochromators based on grating properties.	Analyse	8	0
CO5	Describe the mathematical description of polarization and different states of polarization.	Understand	7	0
C06	Analyse the properties of polarizers, wave plates, birefringent crystals, and circular polarizers.	Analyse	8	0
C07	Identify dextro and levo rotatory substances and explain their optical activity.	Understand	7	0
C08	Apply Jones and Muller matrix calculus to analyse polarizers, retarders, and rotators.	Apply	8	0
	Total number of hours		60	0

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	3	1	1	3			
CO2	3	1	1	3			
CO3	3	1	1	3			
CO4	3	1	1	3			
CO5	3	1	1	3			
CO6	3	1	1	3			
C07	3	1	1	3			
C08	3	1	1	3			

3-High; 2-Medium; 1-Low

Module I

Diffraction-Fresnel's assumptions, rectilinear propagation of light and Fresnel's theory, Fresnel's zones, theory of zone plate, Fraunhofer and Fresnel diffractions, Fresnel-Kirchhoff integral, Fourier transform in Fraunhofer diffraction, diffraction by a single slit, diffraction by a rectangular and circular aperture, limit of resolution, Fourier transforming property of lens, spatial frequency filtering

Module II

Diffraction grating, resolution of a grating, types of gratings, blazed gratings, Mountings for gratingsvarious mounting techniques, Grating spectrographs, resolution and dispersive power of spectrographs, single beam and double beam monochromators. Spectrometers and fluorimeters

Module III

Analysis of Polarization- Mathematical description of polarization, states of polarization, polarization ellipse, special forms, Elliptical parameters,

Double refraction, ordinary and extraordinary rays, Optical Anisotropy-Index ellipsoid, Nicol prism, Nicol prism as a polarizer. Wave plates, full wave plate, Quarter wave and Half wave plates, Birefringence-Birefringent crystals, polarisers, polarization beam splitters, Compensators and Variable retarders, Circular polarizers,

Module IV

Optical activity - Dextro and levo rotatory substances, optical activity in liquids, Half-shade plate, Laurent's half-shade polarimeter, Stress birefringence – Photoelasticity

Jones and Muller matrix calculus- Matrices for polarizer, retarder, and rotator in both representations, Neutral density filter, Muller matrix for Depolarizer

Stokes polarization parameters, Stokes vectors, Stokes parameters for polarized and unpolarized light, Stokes Intensity formula, Poincare sphere, Representation of polarization states

- 1. Optics, Eugene Hecht and A R Ganesan, 5th Edition, Pearson Education (2017).
- 2. Optics- Ajoy Ghatak, McGraw Hill (2020).
- 3. Polarized light Edward Collet, Marcel Decker (1992).
- 4. Introduction to Optoelectronics- Wilson and Hawkes, PHI, (1996).
- 5. Wave optics and Applications R. S. Sirohi, Orient Longmann (2001).
- 6. Optical Electronics Thyagarajan and Ghatak, Cambridge India (2017).
- 7. Polarization of light S. Huard, Wiley (1997).

24-812-0203 Mathematical Methods

(Level 100)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the concepts of vector calculus and matrices.	Understand	5	0
CO2	Utilize vector calculus, matrix inversion and fundamental theorems of vector calculus to interpret physical phenomena effectively.	Apply	5	0
CO3	Understand differentiation of hyperbolic and inverse hyperbolic functions, and the application of Taylor's and McLaurin's theorems.	Understand	5	0
C04	Apply numerical techniques for integration, integration, polynomial fitting and interpolation.	Apply	6	0
C05	Understand curvilinear coordinates.	Understand	6	0
C06	Apply curvilinear coordinates for effectively representing mathematical operations like integrations and differentiations.	Apply	6	0
C07	Understand first order equations and partial differential equations.	Understand	6	0
C08	Apply numerical methods for solving differential equations.	Apply	6	0
	Total Number of Hours		45	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	1	2	1	1	
CO2	3	2	1	1	2	1	1	
CO3	3	2	1	1	2	1	1	
CO4	3	2	1	1	2	1	1	
C05	3	2	1	1	2	1	1	
C06	3	2	1	1	2	1	1	
C07	3	2	1	1	2	1	1	
CO8	3	2	1	1	2	1	1	

3-High; 2-Medium; 1-Low

Module I

Vector calculus: vector differentiation, gradient, divergence and curl, solenoidal and irrotational vector point functions. Vector integration, line, surface and volume integration, Green's theorem, Gauss theorem and Stokes theorem, physical interpretations.

Matrices: orthogonal, symmetric, skew symmetric, Hermitian and skew Hermitian matrices, elementary transformations of a matrix. Similarity and unitary transformation of matrices, diagonalization of matrices, Eigenvalues and eigenvectors, Cayley-Hamilton theorem, solution of algebraic equations using matrices, consistent and inconsistent equations.

Module II

Differential calculus: differentiation of hyperbolic and inverse hyperbolic functions. Taylor's and Mclaurin's theorems, Application to expansion functions.

Partial differentiation: partial derivatives and total differential coefficients. Euler's theorem on homogeneous function, chain rule for partial derivatives, errors and approximations.

Numerical differentiation: first and second order derivatives.

Integral calculus: numerical integration: trapezoidal, Simpson's and Gaussian quadrature methods.

Least-square curve fitting: straight line and polynomial fits, Interpolation: Newton's and Lagrange's formulas

Module III

Curvilinear coordinates: description of curvilinear coordinate system, expression for square of distance element, metric-scale factors, differential distance vector, line integral, area element and area vector, volume element and volume integral, conversion of unit vectors in spherical and cylindrical coordinates into rectangular coordinates and vice versa.

Gradient, divergence, curl and Laplacian operators in curvilinear coordinate systems.

Module IV

Ordinary differential equations: first order equation, variables separable, homogeneous and nonhomogeneous equations, integrating factor, Bernoulli's equations, enact equations, second order linear differential equations with constant coefficients. Complementary function and particular integrals, solution using auxiliary equation.

Numerical solutions of ordinary differential equations: Euler's method and Runge-Kutta methods.

Partial differential equations: derivation of PDE by elimination of arbitrary constants and arbitrary coefficients. Concept of Jacobian. Solution of Lagrange's differential equations, Partial differential equation of the second degree, Laplace, Helmholtz and Poisson equations.

- 1. Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Academic Press, 2001 (Text).
- 2. Advanced Engineering Mathematics 10th Ed., Erwin Keryszig, Wiley, 2011 (Text).
- 3. Mathematical Methods for Physics and Engineering 3rd Ed., K. F. Riley, M. P. Hobson and S. J. Bence, Cambridge University Press, 2006 (Text).
- 4. Vector Analysis with an Introduction to Tensor Analysis Murray R Spiegel, Tata McGraw Hill (1975) Schaum Series (Text).
- 5. Differential Equations, Richard Bronson, Tata McGraw Hill, New Delhi, 1994 (Text).
- 6. Differential Equations and Linear Algebra, Stephen W. Goode and Scott A. Annin, Pearson, 2005 (Text)
- 7. Advanced Mathematics for Engineers Scientists, Murray R Spiegel, McGraw-Hill Education, 2009 (Text).
- 8. Matrices and Tensors for Physicists, A W Joshi, New Age International (1995)
- 9. Numerical Methods Balagurusamy, Tata McGraw Hill, 2001 (Text).
- 10. Introductory Methods of Numerical Analysis, 5th Ed., S. S. Sastry, Prentice Hall of India, 2012 (Text).
- 11. Differential Equations 3rd Ed., Shepley L. Ross, Wiley. 2007 (Text).
- 12. Introduction to Mathematical Physics, Harper Lee and Charlie Mackesy, Prentice Hall India, 1978 (Text).
- 13. Mathematical Methods in the Physical Sciences, 3rd. Ed., M. L. Boas, John Wiley, 2005 (Text).

24-812-0301 Mechanics

(Level 200)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the laws of mechanics, frames of reference, Galilean transformations and forces.	Understand	5	4
CO2	Apply the concepts of laws of mechanics, frames of reference, transformations and forces in order to solve problems involving these ideas.	Apply	6	4
CO3	Explain concepts of Lorentz transformations, relativity, non-absolute nature of space and time and its consequences.	Understand	6	2
CO4	Apply the concepts of relativistic mechanics to reformulate the classical ideas of mass, energy, momentum and their transformation.	Apply	6	4
CO5	Understand the principles of Lagrangian mechanics and solve problems involving generalized coordinates and constraints in mechanical systems.	Understand	5	4
C06	Apply Hamilton's principle and Lagrange's equations of motion of particles and systems in various mechanical scenarios.	Apply	6	4
C07	Understand the concepts of Hamiltonian mechanics and canonical transformations.	Understand	5	4
C08	Apply the Hamilton-Jacobi equation to solve problems in classical mechanics.	Apply	6	4
	Total Number of Hours		45	30

CO-PSO Mapping

CO\PSOPSO 1PSO 2PSO 3PSO 4PSO 5PSO 6PSO 7CO13212111CO23212111CO33212111CO43212111CO53212111CO63212111	PSO 8
CO2 3 2 1 2 1 1 1 CO3 3 2 1 2 1 1 1 1 CO4 3 2 1 2 1 1 1 1 CO5 3 2 1 2 1 1 1 1	
CO33212111CO43212111CO53212111	
CO4 3 2 1 2 1 1 1 CO5 3 2 1 2 1 1 1	
CO5 3 2 1 2 1 1 1	
CO6 3 2 1 2 1 1 1	
CO7 3 2 1 2 1 1 1	
CO8 3 2 1 2 1 1 1	

3-High; 2-Medium; 1-Low

Module I

Frames of reference, Laws of Mechanics, Inertial frames of reference, Galilean transformation, Galilean invariance, Principle of relativity, Conservation of momentum, Non-inertial frames and fictitious forces, Centripetal force, Centrifugal force, Rotating frame of reference, Foucault's pendulum.

Module II

Michelson-Morley experiment, Ether hypothesis, Special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Simultaneity, Addition of velocities, Relativistic Doppler's effect, Conservation of momentum and variation of mass, Relativistic energy, Relation between momentum and energy and conservation laws, Transformation of momentum and energy, Particles with zero rest mass.

Module III

Constraints: types of constraints, difficulties associated with constraints, generalized coordinates Kinetic energy of a system in terms of generalized velocities. Calculus of Variation: Hamilton's Principle, techniques of the calculus of variations, Lagrange's equation from Hamilton's principle. Generalized momenta, cyclic coordinates.

Applications of Lagrangian formulation: motion of a particle in space, Atwood's machine, bead sliding on rotating wire, simple pendulum, harmonic oscillator.

Module IV

Hamiltonian mechanics: Hamiltonian of a system, Hamilton's equations of motions, Canonical transformations, Generating functions.

Poisson Brackets: fundamental properties of PB, Equations of motion in Poisson Bracket form, PB and integrals of motion, Canonical invariance of PB, Lagrange brackets. Hamilton-Jacobi equation for Hamilton's principal function.

- 1. Mechanics, J C Upadhyaya, Ram Prasad and Sons, Agra 2017 (Text).
- 2. Mechanics D S Mathur, S Chand & Company, New Delhi 2007.
- 3. Classical Mechanics, H Goldstein, C Poole and J Safko, 3rd edition, Addison Wesley 2005 (Text).
- 4. Classical Mechanics G Aruldhas, PHI learning, 2014.
- Mechanics: Berkeley Physics Course, Vol. 1, Tata McGraw Hill Education, Noida, 2nd edition 2017.
- 6. The Feynman Lectures on Physics, Vol. I, Narosa Publishing House, New Delhi 2008.
- 7. Classical Mechanics- Rana and Joag, Tata McGrawHill 1992.
- 8. Classical Mechanics V B Bhatia, Narosa Publishing House, New Delhi 1997.
- 9. Mechanics L. D Landau and E. N Lifshitz., Butterworth Heinemann, 3rd edition 2002.

24-812-0302 Nano-Bio Photonics (Level 200)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the basic theory and science of interaction of light with cells and tissues	Understand	8	0
CO2	Understand different light delivery systems	Understand	7	0
CO3	Understand fundamentals of optical imaging	Understand	7	0
CO4	Understand different optical imaging techniques	Understand	8	0
C05	Understand different optical biosensors	Understand	10	0
C06	Understand photodynamic therapy	Understand	5	0
C07	Understand optical tweezers and analyze its applications	Understand	7	0
C08	Understand different tissue engineering techniques using light	Understand	8	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
C05	3	3						
C06	3	3						
C07	3	3						
C08	3	3						

3-High; 2-Medium; 1-Low

MODULE I

Photobiology; interaction of light with cells with cells and tissues, Photo-process in Bio polymers human eye and vision, Photosynthesis; Photo-excitation - free space propagation, optical fibre delivery system, articulated arm delivery, hollow tube wave-guides.

Optical coherence Tomography, Fluorescence microscopy, resonance energy transfer imaging

MODULE II

Bio-imaging: Transmission microscopy, Kohler illumination, microscopy based on phase contrast, darkfield and differential interference contrast microscopy, Fluorescence, confocal and multiphoton microscopy.

Applications of bio-imaging; Bio-imaging probes and fluoropores, imaging of microbes, cellular imaging and tissue imaging

MODULE III

Optical Biosensors: Fluorescence and energy transfer sensing, molecular beacons and optical geometries of bio-sensing, Biosensors based on fibre optics, evanescent waves and interferometric Flow Cytometry: basis, flurochromes for flow cytometry, DNA analysis. Laser activated therapy; Photodynamic therapy, photo-sensitizers for photodynamic therapy, two photon photodynamic therapy.

MODULE IV

Laser tweezers and laser scissors: design of Laser tweezers and laser scissors, optical trapping using non Gaussian optical beam, manipulation of single DNA molecules, molecular motors, semi conductor Quantum dots for bio imaging. Tissue engineering using light; contouring and restructuring of tissues using laser, laser tissue regeneration

- 1. Introduction to bio-photonics- P.N. Prasad Wiley Interscience (2003).
- 2. Biomedical Photonics A handbook editor Tuan. Vo Dinh (CRC Press) (2002).

24-812-0303 Basic Mechanics (Level 200)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the laws of mechanics, frames of reference, Galilean transformations and forces.	Understand	5	0
CO2	Apply the concepts of laws of mechanics, frames of reference, transformations and forces in order to solve problems involving these ideas.	Apply	6	0
CO3	Explain concepts of Lorentz transformations, relativity, non-absolute nature of space and time and its consequences.	Understand	6	0
CO4	Apply the concepts of relativistic mechanics to reformulate the classical ideas of mass, energy, momentum and their transformation.	Apply	6	0
C05	Understand the principles of Lagrangian mechanics and solve problems involving generalized coordinates and constraints in mechanical systems.	Understand	5	0
C06	Apply Hamilton's principle and Lagrange's equations of motion of particles and systems in various mechanical scenarios.	Apply	6	0
C07	Understand the concepts of Hamiltonian mechanics and canonical transformations.	Understand	5	0
C08	Apply the Hamilton-Jacobi equation to solve problems in classical mechanics.	Apply	6	0
	Total Number of Hours		45	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	2	1	1	1	
CO2	3	2	1	2	1	1	1	
CO3	3	2	1	2	1	1	1	
CO4	3	2	1	2	1	1	1	
C05	3	2	1	2	1	1	1	
C06	3	2	1	2	1	1	1	
C07	3	2	1	2	1	1	1	
C08	3	2	1	2	1	1	1	

3-High; 2-Medium; 1-Low

Module I

Frames of reference, Laws of Mechanics, Inertial frames of reference, Galilean transformation, Galilean invariance, Principle of relativity, Conservation of momentum, Non-inertial frames and fictitious forces, Centripetal force, Centrifugal force, Rotating frame of reference, Foucault's pendulum.

Module II

Michelson-Morley experiment, Ether hypothesis, Special theory of relativity, Lorentz transformations, Length contraction, Time dilation, Simultaneity, Addition of velocities, Relativistic Doppler's effect, Conservation of momentum and variation of mass, Relativistic energy, Relation between momentum and energy and conservation laws, Transformation of momentum and energy, Particles with zero rest mass.

Module III

Constraints: types of constraints, difficulties associated with constraints, generalized coordinates Kinetic energy of a system in terms of generalized velocities. Calculus of Variation: Hamilton's Principle, techniques of the calculus of variations, Lagrange's equation from Hamilton's principle. Generalized momenta, cyclic coordinates.

Applications of Lagrangian formulation: motion of a particle in space, Atwood's machine, bead sliding on rotating wire, simple pendulum, harmonic oscillator.

Module IV

Hamiltonian mechanics: Hamiltonian of a system, Hamilton's equations of motions, Canonical transformations, Generating functions.

Poisson Brackets: fundamental properties of PB, Equations of motion in Poisson Bracket form, PB and integrals of motion, Canonical invariance of PB, Lagrange brackets. Hamilton-Jacobi equation for Hamilton's principal function.

- 1. Mechanics, J C Upadhyaya, Ram Prasad and Sons, Agra 2017 (Text).
- 2. Mechanics D S Mathur, S Chand & Company, New Delhi 2007.
- 3. Classical Mechanics, H Goldstein, C Poole and J Safko, 3rd edition, Addison Wesley 2005 (Text).
- 4. Classical Mechanics G Aruldhas, PHI learning, 2014.
- Mechanics: Berkeley Physics Course, Vol. 1, Tata McGraw Hill Education, Noida, 2nd edition 2017.
- 6. The Feynman Lectures on Physics, Vol. I, Narosa Publishing House, New Delhi 2008.
- 7. Classical Mechanics- Rana and Joag, Tata McGrawHill 1992.
- 8. Classical Mechanics V B Bhatia, Narosa Publishing House, New Delhi 1997.
- 9. Mechanics L. D Landau and E. N Lifshitz., Butterworth Heinemann, 3rd edition 2002.

24-812-0401 Thermal and Statistical Physics (Level 200)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe thermodynamic systems and processes, employ laws of thermodynamics in relevant thermodynamic processes and predict the efficiency of heat engines based on Carnot's cycle.	Understand	8	0
CO2	Discuss entropy, thermodynamic functions, and TdS relations.	Understand	7	0
CO3	Apply Maxwell's thermodynamical relations ,Gibbs Helmholtz equations and classify phase transitions and critical phenomena.	Apply	9	0
CO4	Relate thermal and electrical conductivity to Transport processes.	Analyze	6	0
C05	Discuss the concept of phase space as well as microstates and macrostates and explain the statistical origin of thermodynamics and its connection to entropy.	Understand	6	0
C06	Describe the concept of microcanonical, canonical, and grand canonical ensembles, compute various thermodynamic properties of ideal gas.	Apply	9	0
C07	Discuss Maxwell Boltzmann statistics and velocity distribution, and the theory of Brownian motion.	Understand	6	0
C08	Differentiate Fermi-Dirac and Bose-Einstein distribution and discuss the thermodynamics of blackbody radiation and Bose-Einstein condensation.	Understand	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
C05	3	3						
C06	3	3						
C07	3	3						
CO8	3	3						

3-High; 2-Medium; 1-Low

Module I

Thermodynamic systems, thermodynamic equilibrium, thermodynamic variables, equation of states, laws of thermodynamics, thermodynamic process and cycles, application of first law to heat capacities, reversible and irreversible processes, conditions for reversibility, heat engine, Carnot's cycle and Carnot's engine, Carnot's theorem, Clausius theorem and inequality.

Entropy - change in entropy in reversible and irreversible processes, entropy and disorder, entropy of ideal gas. temperature- entropy diagram, entropy and second law of thermodynamics, Nernst Heat Theorem.

Module II

Thermodynamic functions- Enthalpy, Helmhlotz function, Gibbs function, Maxwell's thermodynamic relations, TdS relations-application of Maxwell's thermodynamical relations, Clausius-Clapeyron equation, thermodynamic potential, Gibbs Helmholtz equations.

Phase transitions and critical phenomena - phase diagram, first order phase transition, Clausius-Clapeyoron equation in the context of first order phase transition, Kirchhoff's equation, second order phase transition. Ehrenfest's equations, liquid helium and superfluidity.

Transport processes – momentum transport and viscosity, energy transport and thermal conductivity, charge transport & electrical conductivity.

Module III

Macroscopic and microscopic systems- general descriptions, quantum states and phase space, density distribution in phase space, Liouville's theorem, statistical origin of thermodynamics, entropy from the statistical mechanics point, ensemble, microcanonical, canonical and grand canonical ensembles.

Module IV

Distribution laws - classical and quantum statistics, Maxwell-Boltzmann distribution, velocity distribution, equipartition of energy, relationship between entropy and probability, partition function of monoatomic gas, Brownian motion.

Quantum Statistics- Bose-Einstein and Fermi-Dirac distributions, Bosons and Fermions, thermodynamic behavior of ideal Bose gas, thermodynamics of black body radiation, specific heats of solids, B-E condensation, F-D statistics. thermodynamic behavior of an ideal Fermi gas, electron gas in metals.

- 1. Thermal Physics-Kittel and Kroemer, W. H. Freeman; Second edition (1980) (Text).
- 2. Heat and Thermodynamics -D S Mathur, Sultan Chand and Sons, Revised Fifth edition (2004) (Text).
- 3. Heat and Thermodynamics Zeemansky and R. H. Dittman, Tata McGraw Hill (1997)
- 4. Thermal Physics: with Kinetic Theory, Thermodynamics and Statistical Mechanics- S.C. Garg, R.M. Bansal, C.K. Ghosh, TataMcGraw Hill Education Private Limited; 2nd edition (2017).
- 5. Heat and thermodynamics- Brijlal and Subramanium, S Chand (2008)
- 6. Statistical Mechanics K Huang, John Wiley & sons, 2nd edition (2008) (Text)
- 7. Modern Thermodynamics-D. Kondepudi. Ilya Prigogene, John Wiley sons (1998)
- 8. Statistical Mechanics- Kamal Singh, S. Chand and Co, New Delhi, 1st edition (1988)
- 10. Statistical Mechanics- R. K. Pathria, Butternorth-Heinemann, (1972)
- 11. Modern Physics- Beiser, Tata Mc Graw Hill, (2002)
- 12. Statistical Physics- Berkeley Physics Course Vol 5, F Reif, Tata McGraw Hill, 2011
- 13. Statistical Mechanics-R. K. Pathria, 2nd edition, Elsevier (2002)

24-812-0402 Mathematical Physics II

(Level 200)

Pre-requisite: 24-812-0201 Mathematical Physics I

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand complex numbers, including Euler's formula, De Moivre's theorem, and the concept of nth roots.	Understand	6	
CO2	Apply trigonometric expansions for solving problems involving separation into real and imaginary parts of various trigonometric and inverse trigonometric functions.	Understand	8	
C03	Understand tensors and fundamental operations, covariant and contravariant tensors.	Understand	8	
C04	Understand Christoffel symbols, curvature tensor and analysis of Cartesian tensors.	Understand	8	
C05	Understand Fourier series and Fourier transform and Laplace transform.	Understand	6	
C06	Utilizing Laplace transform methods to solve initial value problems, boundary value problems, and differential equations.	Apply	8	
C07	Understand special functions.	Understand	8	
C08	Apply special functions in solving differential equations.	Apply	8	
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	2	1	1	2	1	1	
CO2	3	2	1	1	2	1	1	
CO3	3	2	1	1	2	1	1	
CO4	3	2	1	1	2	1	1	
C05	3	2	1	1	2	1	1	
C06	3	2	1	1	2	1	1	
C07	3	2	1	1	2	1	1	
C08	3	2	1	1	2	1	1	

3-High; 2-Medium; 1-Low

Module I

Complex numbers, Euler's formula, De Moivre's theorem, nth root of complex numbers. Trigonometric expansions: sin nx, cos nx, tan nx and hyperbolic functions. Separation into real and imaginary parts of sine, cosine, tangent, logarithmic and inverse tangent functions.

Functions of complex variables: analytic functions, power series, Taylor and Laurent series. Contour integration, Cauchy's theorem, Cauchy's integral formula.

Module II

Tensor analysis: definition, law of transformations, rank of tensor, covariant and contravariant tensors. Algebra of tensors, lowering and raising of indices, contraction of tensors, fundamental tensors, metrics. Covariant derivatives, Christoffel symbols, curvature tensor, Cartesian tensors.

Module III

Fourier series: definition, applications, properties. Fourier Transform: properties, convolution theorem, solving differential equations using FT. Laplace Transform: definition, Laplace Transform of simple functions, solving differential equations using Laplace Transform. Initial value problems, boundary value problems, solving differential equations using transform methods.

Module IV

Sturm-Liouville problem, Hermitian differential equations, beta and gamma function. Series solutions to differential equations. Partial differential Equations, separation of variable method, Laplace Equation in spherical polar coordinates and spherical harmonics. Orthogonal functions, Legendre, Bessel, and Hermite and Laguerre differential equations and their solutions.

- 1. Tensor Calculus, David C. Kay, McGraw Hill; Revised Edition, 2011 (Text)
- 2. Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Academic Press, 2001 (Text).
- 3. Advanced Engineering Mathematics 10th Ed., Erwin Keryszig, Wiley, 2011 (Text).
- 4. Mathematical Methods for Physics and Engineering 3rd Ed., K. F. Riley, M. P. Hobson and S. J. Bence, Cambridge University Press, 2006 (Text).
- 5. Vector Analysis with an Introduction to Tensor Analysis Murray R Spiegel, Tata McGraw Hill (1975) Schaum Series (Text).
- 6. Differential Equations and Linear Algebra, Stephen W. Goode and Scott A. Annin, Pearson, 2005 (Text)
- 7. Advanced Mathematics for Engineers Scientists, Murray R Spiegel, McGraw-Hill Education, 2009 (Text).
- 8. Matrices and Tensors for Physicists, A W Joshi, New Age International (1995)
- 9. Differential Equations 3rd Ed., Shepley L. Ross, Wiley. 2007 (Text).
- 10. Introduction to Mathematical Physics, Harper Lee and Charlie Mackesy, Prentice Hall India, 1978 (Text).
- 11. Mathematical Methods in the Physical Sciences, 3rd. Ed., M. L. Boas, John Wiley, 2005 (Text).

24-812-0403 Electronics

(Level 200)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the various configurations of transistors and familiarize with the working.	Understand	6	4
CO2	Understand the working of transistors as amplifiers and analyze the working and types of oscillators.	Analyze	6	4
CO3	Understand the working and frequency response of operational amplifiers.	Understand	6	4
CO4	Familiarize with the various operational amplifier circuits and its applications.	Apply	5	4
C05	Apply Boolean algebra in logic circuit design.	Apply	6	4
C06	Explain the working of combinational logic circuits and flip flops.	Analyze	5	4
C07	Identify the different types of modulation techniques – Amplitude, Frequency and Phase Modulation.	Analyze	6	4
C08	Define information theory, entropy, mutual information and describe the various error detection and correction techniques.	Analyze	5	2
	Total Number of Hours		45	30

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3		1				
CO2	3	3		1				
CO3	3	3		1				
CO4	3	3		1				
C05	3	2		1				
C06	3	3		1				
C07	3	2		1				
CO8	3	2		1				

3-High; 2-Medium; 1-Low

Module I

Bipolar Junction Transistors, PNP and NPN structures, Principle of operation, Relation between current gains in CE, CB and CC, Input and output characteristics of common emitter configuration, load line, Transistor as a switch, transistor as an amplifier, single stage and multistage amplifiers, circuit diagram and working of Common Emitter (RC coupled) amplifier with its frequency response, Concept of transistor biasing, Oscillator: crystal, optoelectronic, RC phase shift, Hartley, Colpitts, Wien Bridge.

Module II

Ideal Amplifier, Operational Amplifiers, frequency response of Op-Amps, fundamental circuits, voltage follower, inverting and non-inverting op-amps, summing and differential amplifiers, op-amp

integrator, differentiator and its applications, op-amp peak detector, Applications of op-amps: filters, comparators, sample and hold circuit, waveform generators.

Module III

Digital fundamentals: Boolean algebra, Boolean theorems, Synthesis of Boolean functions, Karnaugh diagram, logic gates, fundamental logic operations, Universal gate (NAND & NOR) combinational logic circuits, half adder, full adder, half subtractor, full subtractor, multiplexer, demultiplexer, encoder, decoder, flip-flops, RS latches, level clocking, D latcher, D flip flops, JK flip flop, JK Master slave flip-flops. Registers and counters, shift register, controlled shift registers, ripple counters, decoding gates, synchronous counters, ring counters, changing the counter modulus, decade counters.

Module IV

Digital Communication: Amplitude Modulation, double and single sideband techniques, Frequency Modulation and demodulation techniques, bandwidth requirements, pulse communication, pulse width, pulse position, pulse code modulation, information theory, entropy, mutual information, error detection and correction techniques.

- 1. Basic Electronics, Mitchel Schultz and Grob, 12th edition, McGraw-hill Education, 2015.
- 2. Basic Electronics and Linear Circuits, N.N. Bhargava, Tata McGraw-hill Publishing Company Limited, 2008.
- 3. Principles of Electronics, V. K. Mehta & Rohit Mehta, 11th edition, S. Chand Publication, 2014.
- 4. Digital circuits and design, S. Salivahanan and S. Arivazhavan, Vikas Pub. 4th Edn, 2012.
- 5. Fundamentals of digital circuits, A. Anadan, PHI, 2006.
- 6. Communication Systems, A B Carlson, 5th edition, McGraw Hill, 2011.
- 7. Principles of Communication Systems, Herbert Taub, Donald Schilling & Gautam Saha, 4th edition, McGraw Hill, 2017.
- 8. Digital Communication, Nishanth Nazimudeen, 1st edition, Cengage, 2018.

24-812-0404 Quantum Mechanics I

(Level 200)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the shortcomings of classical mechanics and the emergence of quantum theory	Understand	6	0
CO2	Illustrate the concept and significance of wave packets	Understand	9	0
CO3	Explain the properties and interpretations of wave functions	Understand	7	0
CO4	Apply time-independent and time-dependent Schrödinger equations	Apply	8	0
C05	Discuss the fundamental postulates of quantum mechanics	Understand	8	0
C06	Apply linear operators and eigenfunctions in quantum mechanics	Apply	7	0
C07	Solve quantum mechanical problems, including particle in a box and potential barriers	Apply	10	0
C08	Apply the Schrödinger equation to systems with spherically symmetric potentials	Apply	5	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	1	1	2				
CO2	3	1	1	2				
CO3	3	1	1	2				
CO4	3	3	1	1	2	3		
CO5	3	1	1	1	1	1		
C06	3	1	1	1	2	2		
C07	3	3	1	1	2	2		
C08	3	3	1	1	2	1		

3-High; 2-Medium; 1-Low

Module I

Origin of quantum theory: Blackbody radiation, ultraviolet catastrophe, Planck's formulation of black body radiation, photoelectric effect, Einstein's quantum theory of photoelectric effect, Compton effect. Wavelike properties of particles: matter waves, de Broglie hypothesis, Davisson and Germer experiment, the wave-particle duality.

Wave packets: localized wave packets, the uncertainty principle, consequences of the uncertainty principle, uncertainty relations, the motion of wave packets, propagation of wave packets without distortion, group and phase velocities.

Module II

Schrödinger wave function, Born's interpretation of wave functions, Schrödinger's equation for a particle subjected to forces, wave function and its interpretations, probability, probability current density and continuity equation, expectation values, Ehrenfest's theorem, admissibility conditions of wave functions, normalizations of wave functions, box normalization, time-dependent and time-independent Schrödinger equations, stationary states and superposition principle.

Module III

Postulates of Wave Mechanics, dynamical variables as operators, linear operators, commutator brackets, eigen functions and eigenvalues, Hermitian operators and their properties, orthogonality conditions, Schimidt's orthogonalization procedure, physical significance of eigenfunctions and eigenvalues, degeneracy, simultaneous measurability of observables, general uncertainty relations. Representation in continuous bases: position and momentum representations in quantum mechanics, connecting position and momentum representations, matrix and wave mechanics.

Module IV

Applications of Schrödinger equation: particle in a box, square well potential with rigid walls, square well potential with finite walls, square potential barrier and quantum tunnelling, alpha decay, linear harmonic oscillator, particle in a spherically symmetric potential, separation of R, Θ and Φ equations, Hamiltonian of two interacting particles, rigid rotator, hydrogen atom, energy eigenvalues, hydrogen wave function, radial probability density functions and hydrogen atom orbitals.

- 1. Quantum Physics-Eisberg and Resnik, John Wiley Sons(2002) (Text)
- 2. Concepts of Modern Physics-Beiser, Tata McGraw Hill (2002) (Text)
- 3. Quantum Mechanics- G Aruldhas, Prentice Hall India (2004) (Text)
- 4. Quantum Mechanics: Concepts and Applications, Nouredine Zettili, John Wiley & Sons, (2001)
- 5. Principles of Quantum Mechanics -R. Shankar, Springer, (2014)
- 6. Quantum mechanics- Mathews and Venketesan, Tata McGraw Hill (2006)
- 7. Quantum Mechanics-Thankappan V K, New Age International, 2nd edition (2003)
- 8. Introduction to Quantum Mechanics David J Griffiths, Pearson, 3rd Edn, (2018)
- 9. Mastering Quantum Mechanics- Essentials, Theory and Applications, Barton Zwiebach, The MIT Press, Cambridge, Massachusetts (2022)

24-812-0501 Quantum Mechanics II

(Level 300)

Pre-requisites: 24-812-0402 M	athematical Physics II & 24-812-0404	Quantum Mechanics I
110 10quisites: 21 012 0102 M		Quantani Ficchanics i

СО	CO Statement	CL	Class	Lab
CU	co statement	CL	Hrs	Hrs
C01	Differentiate between the Schrödinger picture, Heisenberg picture, and interaction picture in quantum mechanics	Understand	5	0
CO2	Apply the operator method for solving the harmonic oscillator problem	Apply	10	0
CO3	Predict eigenfunctions and eigenvalues of angular momentum operators	Apply	8	0
CO4	Understand Pauli Spin matrices and spin angular momentum	Understand	7	0
C05	Apply time-independent and time-dependent approximation methods in quantum mechanics	Apply	10	0
C06	Inspect transition rates in absorption/emission processes	Analyze	5	0
C07	Understand Scattering theory and scattering cross sections	Understand	6	0
C08	Apply scattering theory to study scattering from various potentials	Apply	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	2	1	1	1			
CO2	3	2	1	1	3			
CO3	3	3	1	2	2			
CO4	3	3	1	2	2	1		
C05	3	2	1	2	3	1		
C06	3	3	1	3	3	1		
C07	3	3	1	3	2	2		
C08	3	3	1	3	2	2		

3-High; 2-Medium; 1-Low

Module I

Parity operator, Solution of linear harmonic oscillator: Operator method, coherent states, matrix representation of creation, annihilation, number, position, and momentum operators of the harmonic oscillator. Pictures of quantum mechanics, Schrödinger picture, Heisenberg picture and interaction picture.

Module II

Orbital angular momentum, General formalism of angular momentum, eigenfunctions and eigenvalues of Jz and J2, matrix representation of angular momentum, geometrical representation of angular momentum, eigenfunctions and eigenvalues of Lz and L2. Spin angular momentum: general theory of spin, Pauli spin matrices.

Module III

Time independent perturbation-first order and second order correction, the stark effect, Degenerate perturbation theory; Variational method, hydrogen atom; WKB approximation, tunnelling through a potential barrier.

Time dependent perturbation theory: first order approximation, transition probability for constant and harmonic perturbations, Fermi's Golden rule.

Module IV

Scattering theory: scattering amplitude and differential cross section of spinless particles, partial wave analysis, Optical theorem, partial wave analysis for inelastic scattering, Born approximation, scattering by hard sphere.

- 1. Quantum Mechanics: Concepts and Applications, 2nd Edition, Nouredine Zettili, John Wiley & Sons, 2009 (Text)
- 2. Principles of Quantum Mechanics -R. Shankar, Springer, (2014) (Text)
- 3. Quantum Mechanics G Aruldhas, Prentice Hall India, (2004)
- 4. Quantum mechanics Mathews and Venketesan, Tata McGraw Hill (2006)
- 5. Modern Quantum Mechanics- J J Sakurai, Pearson Education, Revised Ed (2003)
- 6. Quantum Mechanics-Thankappan VK, New Age International (P)Ltd, 2nd edition (2003)
- 7. Mastering Quantum Mechanics- Essentials, Theory and Applications, Barton Zwiebach, The MIT Press, Cambridge, Massachusetts (2022)

24-812-0502 Electrodynamics (Level 300)

со	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Explain the concepts of electrostatics, electric	Understand	7	0
001	field, electric potential and energy density	onderstand	,	Ŭ
	Apply the concepts of electrostatics to solve the			
CO2	problems relating to electric Field and electric	Apply	8	0
	potential			
	Apply the concepts of magnetostatics to solve the			
CO3	problems relating to magnetic field	Apply	8	0
	and Magnetic potential			
C04	Solve problems related to electromagnetic	Apply	7	0
C04	boundary conditions	Apply	/	0
C05	Understand the concepts related to Faraday's law	Understand	8	0
05	and Maxwell's equations	Understand	0	0
C06	Analyse the propagation, reflection and	Analyse	10	0
00	transmission of plane waves	Allalyse	10	0
C07	Explain magnetism as a relativistic phenomenon	Understand	7	0
C07	of electricity	Understand	/	0
	Explain the significance of gauge transformations			
C08	in physics, particularly in the Lorentz and Coulomb	Understand	5	0
	gauges			
	Total Number of Hours		60	0

Pre-requisite: 24-812-0402 Mathematical Physics II

CO-PSO Mapping

· r	F0							
	CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
	CO1	3	1	1	1			
	CO2	3	1	1	1			
	CO3	3	1	1	1			
	CO4	3	3	1	1			
	CO5	3	1	1	1			
	C06	3	1	1	1			
	C07	3	3	1	1			
	C08	3	3	1	1			

3-High; 2-Medium; 1-Low

Module I

Electrostatics: Electric field, Gauss's Law in integral and differential forms, applications of Guass's law, Scalar potential, Energy of continuous charge distribution, Poisson and Laplace equations, Boundary conditions and uniqueness theorem, Dielectrics, induced dipoles, polarization and field of a polarized object, Guass's law for dielectric media, Displacement field, linear dielectric and dielectric constant, energy and forces in dielectric systems.

Module II

Magnetostatics: Magnetic fields & magnetic forces, Biot-Savart law, Ampere's law, Applications of Amperes law, Magnetic vector potential, Magnetization, Torque and forces on magnetic dipoles, The field of a magnetized object, Ampere's law in magnetized material, Boundary conditions, Magnetic susceptibility and permeability.

Module III

Faraday's law of electromagnetic induction, energy and magnetic field, Maxwell's equation in vacuum and dielectric media, Solutions of Maxwell's equation in vacuum and dielectric media, Poynting's theorem, conservation of energy and momentum, Reflection and refraction of EMW at dielectric boundaries, Snell's law, total internal reflection, Brewster's angle. Electromagnetic waves in conductors, reflection at a conducting surface, frequency dependence of permittivity.

Module IV

Vector and Scalar potentials, gauge transformations- Lorentz and Coulomb gauges. Relativistic Mechanics- proper time, proper velocity, Compton scattering, Magnetism as relativistic phenomenon. Transformation of fields, the field tensor, four vectors, Maxwell's equation in tensor form.

- 1. Introduction to Electrodynamics, David J Griffiths, Cambridge University Press 4th edition (2020) (Text)
- 2. Classical Electrodynamics J.D Jackson, Wiley, 3rd Edition (2007) (Text)
- 3. The Feynman Lectures on Physics, Richard P Feyman, Vol 1&2, Narosa Publishing house (2008)
- 4. Concepts of Modern Physics, Arthur Beiser and Shobhit Mahajan, Tata Mc GrawHill (2009)
- 5. Electricity and Magnetism K K Tewari, S Chand & Company, 3rd Edition (2007)
- 6. Electricity and Magnetism D.N Vasudeva, S Chand & Company (2002)
- 7. Classical Electrodynamics- P S Sengupta, New Age International, 2nd Edition (2015)
- 8. Electromagnetic Theory and wave propagation- S N Ghosh, Narosa Publishers 2nd Ed (2002)
- 9. Introduction to special theory of relativity, R Resnick, Wiley India edition (2010)

24-812-0503 Spectroscopy (Level 300)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the formation of fine and hyper-fine structure of spectral lines and the relative intensities of spectral lines.	Understand	8	
CO2	Utilize coupling schemes like LS coupling and jj coupling to determine spectral terms and term symbols based on electronic configuration.	Apply	7	
CO3	Analyze the Zeeman effect, distinguish between normal and anomalous Zeeman effect, and evaluate Zeeman Shift.	Analyze	8	
C04	Compare the classical and quantum interpretations of the Stark effect in Hydrogen.	Analyze	7	
C05	Describe the formation of rotational and vibrational spectra of molecules.	understand	8	
C06	Apply vibrational and IR spectroscopy for identifying simple molecular structure.	Apply	7	
CO 7	Utilize the Franck-Condon principle to interpret intensity of electronic transitions in diatomic molecules.	Apply	8	
CO 8	Determine the molecular structure using Raman and IR spectroscopy techniques.	Apply	7	
	Total number of hours		60	

CO-PSO Mapping

11 0										
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8		
C01	3	2	1	1	1	1	1			
CO2	3	2	1	1	1	1	1			
CO3	3	3	1	1	1	1	1			
CO4	3	3	1	1	1	1	1			
CO5	3	2	1	1	1	1	1			
C06	3	3	1	1	1	1	1			
C07	3	3	1	1	1	1	1			
C08	3	3	1	1	1	1	1			

3-High; 2-Medium; 1-Low

Module I

Vector atom model-quantum numbers

Symmetry of atomic states, equivalent and nonequivalent electrons, normal and inverted atoms. Spectra of one electron systems: Expression for spin orbit interaction, fine structure of Hydrogen Atom, ionized Helium, alkali atoms, fine structure of doublet states- Sodium D1, D2 lines, Lande interval rule, Lamb shift, Intensity of spectral lines. Hydrogen spectra- Hyperfine structure.

Two electron systems: Spectral terms and term symbols based on electronic configuration. LS coupling, jj coupling, Pauli's exclusion principle, Hund's rule of multiplicity, selection rules, intensity rules

Module II

Zeeman effect: Normal and anomalous Zeeman effect, classical interpretation of normal Zeeman Effect, explanation based on vector atom model, Lande's g factor, Evaluation of Zeeman Shift, Zeeman effect in Sodium atom, experimental arrangement. Intensity distribution of Zeeman lines: BDO rule, Keiss and Megger's rule. Paschen- Back effect: Splitting of Sodium lines, selection rules, Zeeman and Paschen –Back effect in Hydrogen.

Stark effect : Experiment, Stark effect in Hydrogen, weak field and strong field effect: First order and second order stark effect in Hydrogen.

X-ray spectrum, continuous and characteristic X-ray spectra

Module III

Rotational spectra of diatomic molecules as rigid rotor, intensity of rotational lines, The effect of isotopic substitution, energy levels and spectrum of non-rigid rotor.

The vibrating diatomic molecule - simple harmonic oscillator, the anharmonic oscillator, the diatomic vibrating rotator - CO_2 and H_2O molecule. Interaction of rotation and vibrations, the vibrations of polyatomic molecules and their symmetry, the influence of rotation on the spectra of linear molecules

Module IV

Electronic spectra of diatomic molecules - Born-Oppenheimer approximation, vibrational coarse structure - progressions. Intensity of vibrational transitions – the Franck-Condon principle. Dissociation energy and dissociation products. Rotational fine structure of electronic-vibrational transitions - the Fortrat diagram. Predissociation.

Raman effect - classical theory, elementary quantum theory, pure rotational Raman spectra - linear molecules, vibrational Raman spectra polarization of light and Raman effect, structure determination by IR and Raman spectroscopy-simple examples, fundamentals of SERS.

- 1. Introduction to Atomic Spectra, H. E. White, McGraw-Hill Inc., US (1934). (Text)
- 2. Elements of Spectroscopy Gupta, Kumar and Sharma, Pragathi Prakashan Meerat, 6th edition (2011) (Text).
- 3. Fundamentals for Molecular Spectroscopy, 4th Ed., C. N. Banwell and E. M. McCash, McGraw Hill Education (2017) (Text).
- 4. Molecular structure and Spectroscopy (2nd Edition), G. Aruldhas, Prentice Hall of India (2007).

24-812-0504 Optics II: Applied Optics (Level 300)

Pre-requisite: 24-812-0101 Optics I

CO	CO statement	CL	Class Hrs	Lab Hrs	PSO
C01	Explain the basic concepts of diffraction, including Fresnel's assumptions and rectilinear propagation of light	Understand	8	0	1,4
CO2	Apply the Fresnel-Kirchhoff integral and Fourier transform in analysing Fraunhofer and Fresnel diffractions	Apply	7	0	1,4
CO3	Compare and contrast different types of gratings, including blazed gratings	Analyse	7	0	1,4
CO4	Analyse the resolution and dispersive power of spectrographs and monochromators based on grating properties	Analyse	8	0	1,4
CO5	Describe the mathematical description of polarization and different states of polarization	Understand	7	0	1,4
C06	Analyse the properties of polarizers, wave plates, birefringent crystals, and circular polarizers	Analyse	8	0	1,4
C07	Identify dextro and levo rotatory substances and explain their optical activity	Understand	7	0	1,4
C08	Apply Jones and Muller matrix calculus to analyse polarizers, retarders, and rotators	Apply	8	0	1,4
	Total number of hours		60	0	

Module I

Diffraction-Fresnel's assumptions, rectilinear propagation of light and Fresnel's theory, Fresnel's zones, theory of zone plate, Fraunhofer and Fresnel diffractions, Fresnel-Kirchhoff integral, Fourier transform in Fraunhofer diffraction, diffraction by a single slit, diffraction by a rectangular and circular aperture, limit of resolution, Fourier transforming property of lens, spatial frequency filtering

Module II

Diffraction grating, resolution of a grating, types of gratings, blazed gratings, Mountings for gratingsvarious mounting techniques, Grating spectrographs, resolution and dispersive power of spectrographs, single beam and double beam monochromators. Spectrometers and fluorimeters

Module III

Analysis of Polarization- Mathematical description of polarization, states of polarization, polarization ellipse, special forms, Elliptical parameters,

Double refraction, ordinary and extraordinary rays, Optical Anisotropy-Index ellipsoid, Nicol prism, Nicol prism as a polarizer. Wave plates, full wave plate, Quarter wave and Half wave plates, Birefringence-Birefringent crystals, polarisers, polarization beam splitters, Compensators and Variable retarders, Circular polarizers, Module IV

Optical activity - Dextro and levo rotatory substances, optical activity in liquids, Half-shade plate, Laurent's half-shade polarimeter, Stress birefringence – Photoelasticity

Jones and Muller matrix calculus- Matrices for polarizer, retarder, and rotator in both representations, Neutral density filter, Muller matrix for Depolarizer

Stokes polarization parameters, Stokes vectors, Stokes parameters for polarized and unpolarized light, Stokes Intensity formula, Poincare sphere, Representation of polarization states

- 1. Optics, Eugene Hecht and A R Ganesan, 5th Edition, Pearson Education (2017)
- 2. Optics- Ajoy Ghatak, McGraw Hill (2020)
- 3. Polarized light Edward Collet, Marcel Decker (1992)
- 4. Introduction to Optoelectronics- Wilson and Hawkes, PHI, (1996)
- 5. Wave optics and Applications R. S. Sirohi, Orient Longmann (2001)
- 6. Optical Electronics Thyagarajan and Ghatak, Cambridge India (2017)
- 7. Polarization of light S. Huard, Wiley (1997)

24-812-0601 Laser Physics (Level 300)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain line broadening mechanisms.	Understand	6	
CO2	Describe Planck's radiation law and processes of absorption and emission of radiation.	Understand	6	
CO3	Discuss the required conditions for laser action.	Understand	10	
CO4	Solve rate equations for two, three and four level systems.	Apply	10	
C05	Describe various laser cavity modes and its propagation.	Understand	10	
C06	Predict the stability of laser systems.	Apply	8	
C07	Describe various pulse shortening techniques and its use.	Understand	6	
C08	Analyse and apply the safety requirement of high power lasers.	Apply	4	
	Total Number of Hours		60	0

CO-PSO Mapping

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
3	3	1	2			1	
	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2	3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2	3 3 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3-High; 2-Medium; 1-Low

Module I

Decay of excited states, emission broadening and linewidth due to radiative decay, broadening due to collisional decay, Doppler broadening, Voigt profile, quantum mechanical description of radiating atoms, cavity radiations-Planck's law, absorption and stimulated emission, Einstein's coefficients.

Module II

Absorption and gain, population inversion, saturation intensity, development and growth of a laser beam, threshold requirements, laser gain saturation, laser output fluctuations, laser amplifiers, regenerative amplifiers, rate equations - two, three and four level systems, pumping pathways.

Module III

Laser cavity modes - longitudinal and transverse, Fabry-Perot cavity modes, Gaussian shaped transverse modes, stable curved mirror cavities - ABCD matrices, cavity stability criteria, Gaussian beams, Hermite-Gaussian mode, propagation of Gaussian beams using ABCD matrix

Module IV

Unstable resonators, Q-switching, Gain switching, Mode locking, pulse shortening using GVD, pulse compression with gratings and prisms, ultrashort pulse laser and amplifier system, ring lasers. Laser systems: He-Ne laser, Argon ion laser, CO₂ laser, Free-electron laser, Ruby laser, Nd:YAG laser, Titanium sapphire laser.

- 1. Laser Fundamentals, W T Silfvast, Second Edition, Cambridge University Press, New Delhi 2008 (Text)
- 2. Lasers Fundamentals and Applications, K Thyagarajan and Ajoy Ghatak, Second Edition, Springer, New York, 2010 (Text)
- 3. Laser Physics, Peter W Milonni and Joseph H Eberly, Wiley, 2010
- 2. Principles of Lasers, Orazio Svelto, Fifth Edition, Springer, 2010
- 3. Lasers, Anthony E Siegman, Mill Valley, Calif.: University Science Books, 1986

24-812-0602 Fibre Optics (Level 300)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the theory of propagation of light in planar and cylindrical waveguides.	Understand	6	
C02	Describe the formation of modes in a planar optical waveguide.	Understand	6	4
CO3	Classify optical fibers based on their refractive index profiles.	Understand	3	4
CO4	Examine the loss mechanisms in optical fibers and to compute various losses.	Analyze	6	4
C05	Compare different types of pulse broadening mechanisms in optical fibers.	Understand	6	
C06	Practice the use of various standard optical fiber connectors and couplers.	Apply	4	6
C07	Analyze various techniques for the testing of optical fibre systems.	Analyze	6	4
C08	Analyze the functioning of optical fiber sensors.	Analyze	8	8
	Total Number of Hours		45	30

CO-PSO Mapping

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
3	1	1	2			1	
3	3	1	2			1	
3	1	1	2			1	
3	3	1	2			1	
3	1	1	2			1	
3	3	1	2			1	
3	1	1	2			1	
3	3	1	2			1	
	3 3 3 3 3 3 3 3	3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 1 1 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3-High; 2-Medium; 1-Low

Module I

Optical waveguides, numerical aperture, modes in planar waveguides, Goos-Hanchen effect, evanescent field, cylindrical fibres, step index and graded index fibres, single mode and multimode fibres, cut of wavelengths, integrated optics, channel waveguides, electro optic waveguides, i/p and o/p couplers, e-o and m -o modulators, applications of integrated optics - lenses, grating, spectrum analysers.

Module II

Transmission characteristics of optical fibres, attenuation, absorption and scattering losses, wavelengths for communication, bend losses, dispersion effects in optical fibres: material, waveguide dispersions, modal birefringence and polarization maintaining fibres, nonlinear effects in optical fibres: nonlinear losses, self-phase modulation, cross phase modulation, stimulated Raman scattering, stimulated Brillouin scattering.

Module III

Optical fibre measurements: attenuation, dispersion band width, refractive index profile. OTDR, testing of optical fibre systems, eye pattern techniques.

Fabrication and characterization of silica, polymer fibres and photonic crystal fibres, erbium doped fibres, fibre components, couplers, connectors, packaging, splicers, cables, fiber joints, fiber polishing, industrial, medical and technological applications of optical fibre.

Module IV

Fibre optic sensors: advantages of fibre optic sensors, intensity modulation and interference type sensors, intrinsic and extrinsic fibre sensors, wavelength modulated sensors, fibre Bragg grating and fibre long period grating sensors, distributed fibre optic sensors, polarisation modulation type sensors, Sagnac interferometer and fibre optic gyroscope, temperature, pressure, force and chemical sensors.

- 1. Optical Fibre Communication, J. M. Senior, Prentice Hall India, 1994 (Text)
- 2. An introduction to Fiber Optics, Ghatak and Thyagarajan, Cambridge University Press, 1998 (Text).
- 3. Optical Fibre Communication Systems, J. Gowar, Prentice Hall India, 1995
- 4. Fibre optic communication, J. Palais, Prentice Hall India, 1988.
- 5. Fundamentals of Fibre Optic Telecommunication, B. P. Pal., Wiley Eastern, 1994.
- 6. Integrated Optics, R. G. Hunsperger. Springer Verlag, 1998
- 7. Fundamentals of Fibre Optics, B. P. Pal, Wiley Eastern, 1994
- 8. Understanding Fiber Optics, J. Hecht, Pearson Edu. Inc, 2006.
- 9. Fibre Optic Sensors Principles and Applications, B. D. Gupta, New India Publishing, 2006.
- 10. Fibre Optic Communication Systems, 3rd Edition G.P. Agrawal, John Wiley and Sons, 2002

24-812-0603 Computational Methods in Optics and Photonics (Level 300)

со	CO Statement	CL	Class	Lab
co		CL	Hrs	Hrs
C01	Understand fundamental concepts in Python to solve	Understand	4	0
001	mathematical problems.		Т	U
C02	Understand the basics of Mathematica in solving	Understand	8	0
02	algebraic and differential equations.		0	0
C03	Apply the knowledge of eigenvalue problems to	Analyze	8	0
005	analyze the band structure of photonic crystals.		0	0
C04	Apply ABCD matrix method for modelling optical	Apply	8	0
04	systems.		0	0
C05	Understand the fundamentals of the FDTD method.	Understand	8	0
C06	Apply FDTD method to simulate the optical response	Apply	8	0
00	of simple optical systems.		0	0
C07	Understand Finite Element Method.	Understand	8	0
C08	Apply FEM to simulate the optical response of simple	Apply	8	0
008	optical systems.		Ö	U
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	1	1	1	1	3	2	3	
CO2	1	1	1	1	3	2	3	
CO3	1	1	1	1	3	2	3	
CO4	1	1	1	1	3	2	3	
C05	1	1	1	1	3	2	3	
C06	1	1	1	1	3	2	3	
C07	1	1	1	1	3	2	3	
C08	1	1	1	1	3	2	3	

3-High; 2-Medium; 1-Low

Module I

Introduction to Mathematica: overview of Mathematica software and its capabilities. Basics of the Mathematica interface: notebook structure, cells, evaluation, and syntax. Solving algebraic equations, differential equations, and systems of equations in Mathematica. Using built-in functions such as Solve, NSolve, and DSolve.

Maxwell equations and the wave equation, introduction to time-harmonic Maxwell equations and the Helmholtz equation.

Module II

Solving eigenvalue problems in electromagnetism, propagation of light in photonic crystals and calculation of band structure. ABCD matrix and ray tracing: introduction to the ABCD matrix method for optical systems. Ray tracing using matrix methods and transfer matrix method.

Module III

Basic principles of FDTD: discretization of space and time, finite differences, and time-stepping. Spatial discretization: discretization of the electromagnetic field components (E and H fields) in space using finite differences. Temporal discretization and Yee grid, discretization of time using finite differences or central differences, staggered grid arrangement used in FDTD method. Placement of electric field components (E) at cell faces and magnetic field components (H) at cell edges.

Boundary Conditions in FDTD, implementing boundary conditions in FDTD simulations. Perfectly Matched Layer (PML) boundary conditions for absorbing boundaries.

Module IV

Finite Element Method and its relevance in optics and photonics. Basic concepts: discretization, variational formulation, and finite element modelling. Weak formulation of partial differential equations and its application in FEM. Implementing FEM for optical simulations.

- 1. Mathematica by Example, by Martha L. Abell and James P. Braselton, Academic Press Inc., 2007 (text)
- 2. Classical Electrodynamics, J. D. Jackson, 3rd Ed. Wiley (Text).
- 3. Principles of Nano Optics, Bert Hecht and Lukas Novotny, Cambridge University Press, 2012 (Text).
- 4. An introduction to Computational Physics, Tao Pang, 2nd Ed. Cambridge University Press, 2006 (Text)
- 5. Computational Physics, Mark Newman, Amazon Digital Services, 2012 (Text).
- 6. Absorption and Scattering of Light by Small Particles, Craig Bohren and Donald Huffman, John Wiley and Sons, 1998 (Text).
- 7. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Allen Taflove and Susan C. Hagness, Artech House 1995, (Text).
- 8. David B Davidson Computational electromagnetics for RF and microwave engineering Cambridge University Press, 2011 (Text).
- 9. Computational Electromagnetics, Thomas Rylander, Par Ingelström, Anders Bondeson, Springer-Verlag New York, 2013 (Text).
- 10. The Mathematical Theory of Finite Element Method, Susanne C. Brenner and L. Ridgway Scott, Springer-Verlag New York Inc., 2007 (Text).

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Design optical magnifiers and achromatic doublets.	Apply	6	0
CO2	Understand the working of telescopes and adaptive optical techniques.	Understand	9	0
CO3	Illustrate the working of different types of spectrometers and the mounting techniques.	Understand	8	0
CO4	Compare the spectrometers based on their performance.	Apply	7	0
CO5	Understand different methods in optical metrology.	Understand	9	0
C06	Design velocimeters and vibrometers based on laser doppler techniques.	Apply	6	0
C07	Describe the working of basic analytical instruments.	Understand	8	0
C08	Design spectrometers for various applications.	Apply	7	0
	Total Number of Hours		60	0

24-812-0604 Optical Instrumentation (Level 300)

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1	1	
CO2	3	3	1	2	1	1	3	
CO3	3	3	1	2	1	1	1	
CO4	3	3	1	2	1	1	1	
CO5	3	3	1	2	1	1	3	
C06	2	3	1	2	1	1	1	
C07	3	3	1	2	1	1	1	
C08	3	3	1	2	1	1	1	

3-High; 2-Medium; 1-Low

Module I

Lens systems: Principal and meridional rays, magnifiers, ophthalmic lenses, achromatic doublets and collimators, afocal systems, relay systems and periscopes, indirect ophthalmoscopes and fundus camera.

Telescopes: transmissive telescopes and resolution, reflecting telescopes, one-, two- and three-mirror telescopes, astronomical telescopes, adaptive optics, space telescopes, field-aperture telescope.

Module II

Spectrometers: prism spectrometers, deviation and dispersion, mounting arrangements, Littrow and Wadsworth mountings, grating spectrometers, resolution and resolving power, mounting arrangements, Paschen-Runge, Czerny-Turner and Fastie-Ebert mountings, the Rowland mounting, Eagle mounting, Fourier transform spectrometers based on interferometers, Michelson and Twyman-

Green interferometer-based Fourier transform spectrometers, Fabry-Perot spectrometer, Mach-Zehnder and spherical Fabry-Perot interferometers.

Spectrometer configurations: single pass and double pass spectrometers, double monochromator spectrometers.

Comparison between resolution, resolving power, throughput and signal to noise ratio of different spectrometers.

Module III

Optical Metrology: range finders, optical RADAR, curvature and focal length measurement, Moiré technique, Talbot effect, thickness measurement, interferometric methods in small distance measurements, velocity and vibration measurements, velocity measurements using stroboscopic lamps, laser speckle photography and particle image velocimetry, laser Doppler velocimetry, optical vibrometers, different types of laser doppler vibrometers.

Module IV

Analytical Instruments: UV-Vis-IR spectrophotometers, Beer-Lambert's law, microwave and IR spectrometers, spectrofluorometers, FTIR spectrometer, Raman spectrometer.

- 1. Geometrical and instrumental Optics, Volume 25, edited by Daniel Malacara, Academic Press, (1988 (Text).
- 2. Handbook of Optical Engineering, Edited by Daniel Malacara and Brian J Thompson, Marcel Dekker Inc, 2001 (Text).
- 3. Fundamentals of Molecular spectroscopy, C N Banwell, McGraw-Hill Book Company, 4th edition, 2017 (Text).
- 4. Handbook of Analytical instruments, second edition, R S Khandpur, McGraw-Hill Education Private Limited (2006) (Text).

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the principles of measurement used in different sensing schemes.	Understand	8	
CO2	Compare the sensitivity of simple optical sensors.	Understand	6	6
CO3	Explain the application of important interferometric techniques in high precision measurements.	Understand	4	
CO4	Analyze the features and applications of a variety of optical fiber sensors used for the sensitive measurements of various physical and chemical parameters.	Analyze	8	8
C05	Construct and study the response of some sensing systems and understand the basic elements required for the realization of sensors for a particular measurand.	Apply	8	8
C06	Distinguish various optical fibre sensors based on modulation.	Analyze	6	4
C07	Examine the role of optical micro-cavities for sensing applications.	Understand	2	4
C08	Explain some emerging sensors based on photonic crystal fibers and fiber loop ringdown spectroscopy.	Understand	3	
	Total Number of Hours		45	30

24-812-0606 Optical Sensor Technology (Level 300)

CO-PSO Mapping

0 · · · · · · · · · · · · · · · · · · ·								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	1	1	2			1	
CO2	3	3	1	2			1	
CO3	3	1	1	2			1	
CO4	3	3	1	2			1	
CO5	3	3	1	2			1	
CO6	3	3	1	2			1	
C07	3	3	1	2			1	
C08	3	3	1	2			1	

3-High; 2-Medium; 1-Low

Module I

Introduction to sensors, Active and Passive sensors, Sensor performance parameters, light beam as a sensing tool (optical sensor) - broad classification of optical sensors, photoelectric effect, photoconductivity, photodiode, phototransistor. Simple optical sensors - single and double optic lever; Method of Triangulation; Projected fringe technique; Remote sensing using laser-lidar for atmospheric remote sensing, lidar equation.

Module II

Interferometry for precision measurements, two-beam interferometry- Michelson, Mach Zehnder, Sagnac interferometers and applications, fringe displacement and fringe counting; Homodyne interferometer, heterodyne interferometer, super heterodyne interferometry; Multiple beam interference, Fabry Perot etalon and applications, Electron speckle pattern interferometry; Photoelastic measurements; Moire technique.

Experiential Learning: Moire pattern- displacement and refractive index (liquid) measurement, radius of curvature, focal length of spherical lenses.

Module III

Light transmission in microbend optical fibres- microbend OFS- measurements with microbend sensors; Evanescent wave (EW) phenomenon – Absorption and fluorescence, Beer lambert law, absorption and complex index, evanescent wave FOS, chemical sensors using EWFOS, evanescent wave fluorescence based sensor; Surface Plasmon resonance based fiber sensor-principle and applications; Fibre Bragg grating and Long period grating sensor, Distributed fiber optic sensing and applications- OTDR and its applications, fully distributed & quasi-distributed systems; FO smart sensing-basic architecture and example

Experiential Learning:

Study the shift in absorption or fluorescence characteristics of dyes/nanoparticles with pH and concentration. Evanescent wave optical fiber sensor- U shaped, Tapered etc. fabrication and application to refractive index and chemical sensing application

Module IV

Interferometric FOS basic principles, interferometric configurations- component, and construction of interferometric FOS - Mach-Zehnder, Michelson, Sagnac & fiber gyro-open loop and closed loop biasing scheme, Fabry-Perot configurations – application of interferometric FOS examples Optical microcavities, Whispering Gallery Modes in Optical microcavities, Passive and Active WGM microcavities, Polymer optical fiber based WGM microcavities, WGM Microcavities based sensors. Photonic crystals and photonic crystal fiber sensors, fiber loop ringdown spectroscopy

Experiential Learning:

Michelson, Mach Zehnder fiber optic sensors (using 3 dB couplers), Whispering gallery mode sensing using optical microcavities.

- 1. Optical Networks: A Practical Perspective 3rd Edition, R Ramaswamy and Kumar N. Sivarajan, Morgan Kaufmann Publishers, 2010, (Text).
- 2. WDM Optical Networks Concepts, Design and Algorithms, Sivaram Murthy and Mohan Guruswamy. Prentice Hall, 2001 (Text).
- 3. Understanding Optical Communications, by Harry J.R. Dutton (pdf version http://cs5517.userapi.com/u133638729/docs/3745fff272ed/Dutton_HJR_Understanding_Opti cal_Communications.pdf)
- 4. Optoelectronic Packaging (Wiley Series in Microwave and Optical Engineering), Alan R. Mickelson, Nagesh R. Basavanhally, Yung-Cheng Lee, Wiley Blackwell, 1997.
- 5. WDM Technologies: Active Optical Components, Volume 1, By Niloy K. Dutta, Masahiko Fujiwara, Academic Press, 2002.
- 6. Clean Assembly Practices to Prevent Contamination and Damage to Optics, J.Pryatel, W.H. Gourdin (pdf version available at https://e-reports-xt.llnl.gov/pdf/328839.pdf).
- 7. Advanced Optical Wireless Communication Systems, Shlomi Arnon, John Barry, George Karagiannidis, Robert Schober, and Murat Uysal, Cambridge University Press, 2012.
- 8. Optical Wireless Communications System and Channel Modelling, Z. Ghassemlooy W. Popoola S. Rajbhandari, CRC Press, 2019.

24-812-0607 Photonic Crystals and Optical Metamaterials (Level 300)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Summarize the fundamental concepts of electromagnetic waves in periodic structures, including the Bloch theorem and photonic band structure.	Understand	6	3
CO2	Explain the concept of bandgap engineering in 2D and 3D Photonic crystals, understanding how it influences the optical properties.	Understand	5	4
CO3	Apply the mixing rules to analyze the macroscopic effective parameters of metamaterials, considering the optical properties of metals and dielectrics.	Understand	6	3
CO4	Illustrate the optical magnetism in nature, examining the role of split-ring resonators in creating magnetic metamaterials.	Apply	6	4
C05	Explain the principles of nonlinear optics with metamaterials.	Understand	5	3
C06	Utilize the concepts of transformation optics to explain the electromagnetic cloak of invisibility.	Apply	6	3
C07	Discuss the principles behind super resolution with meta- lenses, examining how these lenses achieve subwavelength resolution in optical imaging.	Understand	6	5
C08	Evaluate the theoretical foundations and limitations associated with the concept of a perfect lens with subwavelength resolution.	Apply	5	5
	Total number of hours		45	30

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	3	1	1	2	
CO2	3	3	1	3	1	1	2	
CO3	3	3	1	3	1	1	2	
CO4	3	3	1	3	1	1	2	
CO5	3	3	1	3	1	1	2	
C06	3	3	1	3	1	1	3	
C07	3	3	1	3	1	1	3	
C08	3	3	1	3	1	1	3	

3-High; 2-Medium; 1-Low

Module I

Photonic crystals: Electromagnetic waves in periodic structures-Matrix theory of dielectric layered media, Bragg Grating,1D Photonic crystals — Bloch modes, Dispersion relation and photonic band structure.

Real and reciprocal lattices; 2D and 3D Photonic crystals; Bandgap engineering; Devices based on photonic crystals; Emerging Applications of Photonic Crystals.

Module II

Metamaterials: Macroscopic Effective Parameters, Optical properties of metals and dielectrics, Metal-Dielectric Composites and Mixing Rules-electric metamaterials-Optical Properties of Stratified Metal-Dielectric Composites-Periodic Array of Metallic Wires-Semicontinuous Metal Films-Magnetic Metamaterials-Split-Ring Resonators.

Module III

Negative-Index Metamaterials-Reversed Phenomena in Negative-Index Media-Optical negative index materials-General Recipe for Construction-Nonlinear Optics with Metamaterials-Second-Harmonic Generation and the Manley–Rowe Relations in Negative-Index Materials-Optical Parametric Amplification in Negative-index Materials.

Module IV

Super Resolution with Meta-Lenses-Perfect Lens with Subwavelength Resolution.

Transformation Optics and Electromagnetic Cloak of Invisibility-Cloaking by Coordinate Transformation.

Experimental Techniques-Fabrication of Two-Dimensional Optical Metamaterials-Characterization of Spectral Properties.

- 1. Fundamentals of Photonics, 3rd Edition. by Bahaa E. A. Saleh, Malvin Carl Teich (2019).
- 2. Fundamentals and Applications of Nanophotonics. by Joseph W. Haus (2016).
- 3. Optical Metamaterials: Fundamentals and Applications, W. Cai and V. Shalaev Springer (2010).
- 4. Optical waves in layered media, Pochi Yeh, Wiley Interscience publication (1988).
- 5. Photonic crystals: moulding the flow of light, John Joannopoulos, Joshua N. Winn, and Robert D. Meade, Princeton University press, Second Edition (2008).

24-812-0608 Fourier Optics and Optical Signal Processing (Level 300)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the fundamental concepts of signals.	Understand	8	
C02	Explain the properties of linear systems.	Understand	7	
CO3	Illustrate the difference between Fraunhofer and Fresnel diffraction.	Understand	7	
C04	Apply the principle of diffraction to specific examples.	Apply	8	
C05	Utilize the Fourier transform property of the lens to predict image formation by a lens.	Apply	8	
C06	Distinguish between coherent and incoherent imaging systems and their transfer functions.	Analyze	7	
C07	Explain optical correlators and acousto-optic signal processing.	Understand	8	
C08	Illustrate advanced pulse shaping and processing techniques.	Understand	7	
	Total hours		60	0

CO-PSO Mapping

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1	1	
CO2	3	3	1	3	1	1	1	
CO3	3	3	1	2	1	1	1	
CO4	3	3	1	3	1	1	1	
CO5	3	3	1	3	1	1	1	
C06	3	3	1	2	1	1	1	
C07	3	3	1	3	1	1	1	
CO8	3	3	1	3	1	1	1	

3-High; 2-Medium; 1-Low

Module I

Signals: Characterization of a General signal, examples of signals, Spatial signal.

Linear Systems: Linearity and the Superposition Integral, Invariant Linear Systems, Transfer Functions.

General aspects of linear systems, Fourier transformation and spatial frequency spectrum, Linear space invariant and space variant systems. Sampling theory–Shannon-Whittaker sampling theorem, space-bandwidth product.

Module II

Fraunhofer and Fresnel diffraction, the Huygens-Fresnel Principle, Fresnel approximation, Positive and Negative Phases, Fourier transform in Fraunhofer diffraction. Examples of Fraunhofer diffraction-Rectangular aperture, Circular aperture.

Fresnel transform, Fresnel diffraction- square aperture, Fresnel propagation of a laser beam. Self imaging, Lau and Talbot effects.

Module III

Wave optics analysis of coherent optical systems. Thin lens as a phase transformation, the paraxial approximation, Fourier transform properties of lenses, different cases of image formation, Image formation in monochromatic illumination, lens law

Diffraction–limited coherent imaging, Fresnel zone plate, Operator approach to optical systems. Frequency response of diffraction-limited coherent imaging – the amplitude transfer function (ATF).

Optical Transfer Function (OTF), frequency response of a diffraction-limited incoherent imaging. Aberrations and their effects on frequency response. Comparison of coherent and incoherent imaging. Resolution beyond the diffraction limit.

Module IV

Optical Information Processing, Incoherent and Coherent Image Processing Systems, Optical Correlators, Acousto-Optic Signal Processing Systems, The Vanderlugt filter.

Pulse shaping and temporal processing, Holography and Diffractive Optics, Wave-front reconstruction, Computer Generated Holography.

- 1. Introduction to Fourier Optics, J. W. Goodman, McGraw-Hill. Third Edition, 2004
- 2. Statistical Optics, J. W. Goodman, Wiley Inter-science, 2000.
- 3. Fundamentals of photonics, Saleh and Teich, Wiley Interscience, 2007.
- 4. Optical signal processing, Anthony Vanderlugt, Wiley-Interscience

24-812-0701 Optoelectronics (Level 400)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyze the energy band structure of semiconductors to differentiate between direct and indirect bandgap materials.	Understand	4	4
CO2	Design basic circuits utilizing semiconductor principles, evaluating dynamic resistance and capacitance in pn junctions.	Apply	5	4
CO3	Evaluate LED materials, structures, and efficiencies to optimize luminous flux characteristics for various applications.	Analyze	5	6
CO4	Apply LED principles in optical fiber communications, designing circuits for efficient data transmission.	Apply	6	0
C05	Apply the Shockley-Ramo theorem to assess external photocurrent in various photodetectors, considering noise characteristics.	Apply	5	4
C06	Analyze the characteristics and applications of advanced photodetector technologies, such as avalanche photodiodes and pin photodiodes.	Evaluate	5	6
C07	Assess the efficiencies and structures of various sensors and solar cells, optimizing performance for specific applications.	Analyze	5	6
C08	Apply principles of optical computing, including QSD arithmetic and symmetric coding, in designing efficient computational systems.	Apply	10	0
	Total Number of Hours		45	30

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	3	2			3		
CO2	3	2					
CO3	3	2		2			
CO4	3	2		2			
CO5	3	2		1			
CO6	3	2		1			2
C07	3	2		1			2
C08	3	2		1			

3-High; 2-Medium; 1-Low

Module I

Review of semiconductor concepts and energy bands, Semiconductor statistics, Extrinsic semiconductors, Direct and indirect bandgap semiconductors, pn Junction principles, pn junction reverse current, pn junction dynamic resistance and capacitances, recombination lifetime, pn junction band diagram, Heterojunctions.

Module II

Light-emitting diodes: Principles, Homo junction and hetero junction LEDs, Quantum well LEDs, LED materials and structures, LED efficiencies and luminous flux, Basic LED characteristics, LEDs for optical fibre communications, Phosphors and white LEDs, LED electronics, Semiconductor lasers.

Module III

Principle of the pn Junction photodiode, Shockley-Ramo theorem and external photocurrent, Absorption coefficient and photodetector materials, Quantum efficiency and responsivity, The pin photodiode, Avalanche photodiode, Heterojunction photodiodes, Schottky junction photodetector, Phototransistors, Photoconductive detectors, Basic photodiode circuits, Noise in photodetectors. Image sensors: CMOS and CCD.

Module IV

Photovoltaic devices: Solar cells, Basic principles, Operating current and voltage, and Fill factor, Equivalent circuit of a solar cell, Solar cell structures and efficiencies.

Optical computing: QSD arithmetic, Symmetric coding, Optoelectronic implementation, Artificial neural networks, Optical implementation of neural networks, Optical architecture for pattern association, Optical logic gates, Optical backplane buses, Binary memory cell and Optical switches.

- 1. Optoelectronics and Photonics: Principles and Practices (Second Edition), S O Kasap, Pearson 2023 (Text)
- 2. Optoelectronic Devices and Systems (Second Edition), S C Gupta, PHI Learning Pvt Ltd 2015 (Text)
- 3. Optoelectronics Sensors and Instrumentation, M K Ghosh, Ed-Tech New Delhi 2018.
- 4. Semiconductor Optoelectronic Devices (second edition), Pallab Bhattacharya, Pearson 2017.

24-812-0702 Condensed Matter Physics (Level 400)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe structural elements such as crystal planes and directions using standard notations.	Understand	8	0
CO2	Explain the concepts of reciprocal lattice and Brillouin zones.	Understand	7	0
CO3	Apply the theory of lattice vibrations to determine thermal properties of solids.	Apply	8	0
CO4	Understand the theory, properties and classification of superconductors and explain flux quantization and Josephson effects.	Understand	7	0
C05	Explain the concept of density of states and occupation to determine macroscopic properties of solids.	Understand	5	0
C06	Formulate the problem of electrons in a periodic potential, analyze electron dynamics in semiconductors and the effect of doping on the electronic properties of semiconductors.	Analyze	10	0
C07	Outline the fundamental concepts of dielectric properties of materials- electric dipole moment electric flux density, polarizability and source of polarizability.	Understand	6	0
C08	Understand magnetic properties of materials and classify magnetic materials based on magnetic susceptibility.	Understand	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
CO5	3	3						
C06	3	3						
C07	3	3						
C08	3	3						

3-High; 2-Medium; 1-Low

Module I

Crystal symmetry and crystal systems: translational vectors and lattices, unit cell, Miller indices, symmetry operations, reciprocal lattices, hexagonal close packed structure, NaCl, CsCl, diamond and ZnS structures, X-ray diffraction and Bragg's law, powder diffraction, different types of bonding in crystals, Vandervaal's, ionic, covalent, metallic and hydrogen bonds.

Module II

Lattice vibrations: phonons, phonon spectra of monatomic and diatomic linear lattices, scattering of phonons by neutrons, experimental techniques to get phonon spectra, lattice heat capacity, Einstein's Model, Debye's Model.

Superconductivity:experimental survey, type I and type II superconductors, Meissner effect, heat capacity, energy gap, isotope effect, thermodynamics of the superconducting transitions, London equation, coherence length, BCS theory of superconductivity, flux quantisation, Josephson effects, SQUID, high temperature superconductors.

Module III

Band theory of solids: density of states, Fermi level, origin of bands, Bloch theorem, Kronig- Penney model, classification of materials based on band gap, electrical conduction in metals and semiconductors, effect of doping on Fermi level in semiconductors.

Module IV

Dielectric properties of solids: polarisability, local electric field of an atom, ferroelectric crystals, Clausius Mossotti relation, Lorentz – Lorenz formula, Curie-Weiss Law, magnetic properties of solids, dia, para and ferro magnetism, Langevin's theory of diamagnetism and paramagnetism, ferromagnetic domains, hysteresis, B-H curve, adiabatic demagnetization.

- 1. Solid State Physics C Kittel, 7 th edition, John Wiley (2004)(Text)
- 2. Introduction to Solids Azaroff, Tata McGraw Hill (1977)
- 3. Text Book of Solid State Physics S O Pillai, New age International (2002)
- 4. Problems in Solid State Physics S O Pillai, New age International (2003)
- 5. Solid State Physics- A J Dekker, MacMillian India Ltd (2005)
- 6. Solid State Physics- M A Wahab, 2nd edition, Narosa Publishing House Pvt. Ltd(2005)
- 7. Solid State Physics, N W Ashcroft, N David Mermin, Harcourt, (1976)

24-812-0705 Nonlinear Optics (Level 400)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the concept of nonlinear susceptibilities, symmetries of nonlinear susceptibilities, index contraction and predict frequencies generated by nonlinear optical processes.	Apply	8	0
CO2	Analyze the theory of second order nonlinear effects - SHG, SFG DFG, OPO, Frequency Up/Down Conversion, principles of Phase-matching and Quasi Phase Matching conditions.	Analyze	7	0
CO3	Explain the concepts of Third order nonlinearity- third order susceptibility tensor, Degenerate four wave mixing.	Understand	9	0
CO4	Explain the theory behind Optical Phase Conjugation and its applications in image processing and distortion correction.	Understand	6	0
C05	Explain the theory of nonlinear scattering mechanisms.	Understand	6	0
C06	Understand the theories related to Self Focusing , Self Induced Transparency, and the propagation of optical solitons.	Understand	9	0
C07	Explain the theory of nonlinear absorption processes - Saturable Absorption, Reverse Saturable Absorption, Two photon Absorption and its applications.	Understand	6	0
C08	Analyze the theory of nonlinear Fabry-Perot etalon, optical bistability and its applications.	Analyze	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
CO5	3	3						
C06	3	3					2	
C07	3	3					2	
CO8	3	3						

3-High; 2-Medium; 1-Low

Module I

Historical Overview of Nonlinear Optics, Non-linear polarization, physical origin of non-linear optical coefficients- Classical Anharmonic Oscillator Model, Miller's Rule, susceptibility tensors, Symmetries of nonlinear susceptibilities, Index contraction, d-matrix., Parametric and Non- parametric processes. Propagation of EMW through nonlinear media, Coupled amplitude equations for second-order processes $\chi^{(2)}$, Phase Matching conditions, Quasi Phase Matching (QPM), second harmonic generation, sum and difference frequency generation, optical parametric processes (OPA and OPO), Frequency Up/Down conversion.

Module II

Third order nonlinearity: Third order susceptibility tensor, Degenerate four wave mixing , Phase conjugate optics- properties of phase conjugate light, Generation of phase conjugate light, FWM in optical Kerr media, coupled mode formulation, Resonators with OPC mirror, Imaging through distorting medium.

Module III

Nonlinear scattering processes - Stimulated Raman Scattering (SRS)-Quantum mechanical description of Raman scattering, Raman cross section and gain, SRS described by non-linear polarization, Anti Stokes Raman Scattering, Coherent Antistokes Raman Scattering (CARS).

Self action effects- intensity dependent refractive index, Self-focusing effect, Self-induced transparency- pulse area theorem.

Module IV

Nonlinear absorption- Two photon Absorption (TPA), Multiphoton absorption, Applications of nonlinear absorption, saturable and reverse saturable absorbers, Z-scan theory of closed aperture and open aperture scan. Nonlinear Fabry- Perot etalon (NLF), NLF as a computing element, Optical Bistability, Optical logic gates.

- 1. Hand book of Nonlinear optics-Richard L Sutherland, (Second Edition), Marcel Dekker Inc,(2003) (Text).
- 2. Nonlinear optics- Robert W Boyd, Academic Press, Elsevier, Inc (Third Edition) (2008), (Text).
- 3. Photonics, Elemental and Devices- V V Rampal, Wheeler Publishing (1992).
- 4. Lasers and Nonlinear optics- B B Laud, Wiley Eastern 3rd Edition, (2004).
- 5. Optical Electronics in Modern Communications -A Yariv, Oxford University Press(5th Edition), (1997).
- 6. Nonlinear Optics- Y R Shen, John Wiley Sons (1991).
- 8. Nonlinear Fibre Optics- Govind P Agarwal, Academic Press, 4th Edition(2007).
- 9. Quantum Electronics- A Yariv, John Wiley Sons (1989).
- 10. Fundamentals of Photonics-B E A Saleh, M C Teich, John Wiley Sons, 2nd edition (2007).
- 11. Physics of nonlinear optics-Guang S He and Song H Lie, world scientific , London (1999).
- 12. Fundamentals of Nonlinear Optics- P.E.Powers, CRC Press(2011).

24-812-0706 Nanophotonics (Level 400)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the basics of nanophotonics considering photon propagation under various interaction potentials.	understand	6	0
CO2	Explain the nanoscale optical interactions and apply nanoscale enhancement in near field optics and microscopy.	Apply	10	0
CO3	Explain the Quantum confinement effects in nanomaterials.	Analyze	8	0
CO4	Discuss nanostructural material behaviour and nanostructering techniques.	Analyze	8	0
C05	Explain various methods of nano- structure fabrication.	understand	7	0
C06	Characterization analysis of nanostructure size using experimental techniques.	Analyze	7	0
C07	Explain nanoplasmonics and photonic band gap nanostructures.	Apply	7	0
C08	Manipulate nanostructures to enhance secondary emission.	Analyze	7	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2			1	
CO2	3	3	1	1			1	
CO3	3	3	1	2			1	
CO4	3	3	1	1	1		1	
C05	3	2	1	2	1		1	
C06	3	3	1	2	1		1	
C07	3	3	1	1			1	
C08	3	3	1	1			1	

3-High; 2-Medium; 1-Low

Module I

Introduction to Nanophotonics – Breaking through diffraction limit, evanescent waves and optical near- field generation. Nanophotonics for real-time qualitative innovation.

Foundations of Nanophotonics- Photons and electrons- similarities and differences, Free-space propagation confinement of photons and electrons, propagation through classically forbidden zone: Tunnelling.

Localization under a periodic potential: bandgap, cooperative effects for photons and electrons, Nanoscale optical interactions: nanoscale confinement of electronic interactions, nanoscale electronic energy transfer, near-field interaction and microscopy, nanoscale enhancement of optical interactions.

Module II

Quantum confinement nature: Quantum well, Quantum wires, Quantum dots and Quantum rings. Manifestation of quantum confinement: modification of optical properties, semiconductor quantum dots, Quantum confined stark effects, Dielectric confinement effects.

Molecular nanotechnology and Quantum dot lasers.

Nano-structural material behaviour- nanoparticles, nano clusters, and nanocrystals. Nanomaterials and nano structuring techniques – Carbon nanotubes, single walled and multiwalled carbon nanotubes.

Module III

Manufacturing methods of nanomaterials: Top-down approach, Bottom-up approach, Combined Topdown and Bottom-up manufacturing.

Growth methods of Nanomaterials and nanoparticles – MBE, MOCVD, LPE, LAVD.

Characterization of Nanomaterials – X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), TEM, SEM, RHEED, EDS, SPM, STM.

Module IV

Nanoplasmonics: optical properties of metal-nano particles, size dependent absorption and scattering of coupled nanoparticles metal-dielectric core- shell nanoparticles, local electromagnetic fields in metal nanoparticles.

Photonic Crystals: Basic concepts: band gap and band structures in two and three dimensional lattices, periodic structures in nature, experimental methods of fabrication.

Plasmonic enhancement of secondary radiation: classification of secondary radiations, enhancement of emission and scattering of light, local density of states in plasmonic nanostructures.

Hotspots in plasmonic nanostructures, Raman-scattering enhancement in metal-dielectric nanostructures, luminescence enhancement in metal-dielectric nanostructures.

- 1. Nanophotonics- P N Prasad, Wiely Interscience(2003) (Text)
- 2. Principles of Nanophotonics- Motoich Ohtsu, KiyoshKohayish CRC Press (2012)
- 3. Nano materials Handbook- Ahemmed Bunaina, CRC Press, 2nd Edition (2009)
- 4. Nanostructured materials and Nanotechnology- Haro Singh Nalwa Academic Press (concise edition) USA (2002)

24-812-0707 Laser Spectroscopy (Level 400)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the importance of lasers in spectroscopy.	Understand	6	
CO2	Compare principles of photo acoustic and optothermal spectroscopy.	Analyze	6	
CO3	Enumerate the importance of ionization spectroscopy.	Analyze	8	
CO4	Discuss the difference between magnetic resonance and fluorescence spectroscopy.	Analyze	8	
C05	Describe various multiphoton spectroscopic processes.	Understand	8	
C06	Discuss the importance of Laser Raman Spectroscopy.	Understand	8	
C07	Analyze various techniques to measure ultra short pulses.	Analyze	8	
C08	Assess recent laser spectroscopic techniques for a particular use.	Evaluate	8	
	Total Number of Hours		60	0

CO-PSO Mapping

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2			1	
CO2	3	3	1	2			1	
CO3	3	3	1	2			1	
CO4	3	3	1	2			1	
C05	3	3	1	2			1	
C06	3	3	1	2			1	
C07	3	3	1	2			1	
CO8	3	3	1	2			1	

3-High; 2-Medium; 1-Low

Module I

Advantages of lasers in spectroscopy, Frequency Modulation, Intra-cavity Laser Absorption Spectroscopy, Cavity Ring-Down Spectroscopy, Fluorescence Excitation Spectroscopy, Photoacoustic Spectroscopy, Optothermal Spectroscopy.

Module II

Ionization Spectroscopy – photo-ionization, collision-induced and field ionization, Sensitivity of ionization Spectroscopy, Pulsed versus CW Lasers for photo-ionization, resonant two-photon ionization combined with mass spectroscopy, optogalvanic spectroscopy, laser magnetic resonance and Stark spectroscopy, laser induced fluorescence spectroscopy

Module III

Linear and nonlinear absorption, saturation spectroscopy, Polarization spectroscopy, Multiphoton spectroscopy, two-photon absorption spectroscopy, Doppler-Free Multiphoton Spectroscopy, Experimental techniques of linear Laser Raman Spectroscopy, Nonlinear Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy, Resonant CARS and BOX CARS, Surface Enhanced Raman Spectroscopy

Module IV

Time resolved laser spectroscopy, Measurement of Ultrashort Pulses, Streak Camera, Optical Correlator for Measuring Ultrashort Pulses, FROG Technique, SPIDER Technique, Lifetime Measurement with Lasers, Spectroscopy in the Pico-to-Attosecond Range, Applications, Laser Induced Breakdown Spectroscopy, Laser Cooling and trapping of atoms, Fluorescence Correlation Spectroscopy, Optical Frequency Combs

- 1. Laser Spectroscopy Vol. 2 Experimental Techniques, Wolfgang Demtröder, Springer Berlin Heidelberg (2008) (Text)
- 2. Femtosecond Optical Frequency Comb: Principle, Operation and Applications, Jun Ye, Steven T Cundiff, Springer New York, 2010
- 3. Photoacoustics and Photoacoustic Spectroscopy, A. Rosencwaig, Wiley Interscience, New York, 1980
- 4. Laser cooling and trapping, H J Metcalf and P Straten, Springer New York, 1999

24-812-0708 Quantum Optics and Quantum Computing (Level 400)

Pre-requisite: 24-812-0404 Quantum Mechanics	I & 24-812-0501 Quantum Mechanics II
--	--------------------------------------

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand quantized electromagnetic field and the origin of number states.	Understand	7	0
CO2	Illustrate the concept of coherent states and squeezed states.	Apply	8	0
CO3	Examine optical coherence, photon correlation, and photon statistics.	Apply	10	0
C04	Summarize the squeezed light generation and applications.	Understand	5	0
C05	Analyse the concepts of hidden variable, entanglement and interferometric measurements.	Analyze	9	0
C06	Discover the interaction between atoms and quantised fields.	Analyze	6	0
C07	Explain the concept of qubits and quantum gates.	Analyze	7	0
C08	Classify various quantum algorithms and quantum hardware.	Analyze	8	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	2	1	1		
CO2	3	3	1	2	1	2		
CO3	3	3	1	3	1	3		
CO4	3	2	1	3	2	1		
C05	3	3	1	2	2	1		
CO6	3	3	1	3	3	3		
C07	3	3	1	1	3	1		
C08	3	2	1	1	3	1		

3-High; 2-Medium; 1-Low

Module I

Concept of density matrix and its properties: Quantization of EMF, Fock/Number states, Expansion in number states, Coherent States, Displacement operator, Squeezed States, Squeezing operator, Coherence properties of EMF: First order optical coherence, Photon correlation measurements, Hanbury Brown-Twiss experiments

Module II

Photon counting measurements, Classification of light by photon statistics, Photon bunching, Photon antibunching, Squeezed light: Generation and application of squeezed light, Resonant light atom interactions, Two level atom approximation, Rabi oscillations.

Module III

EPR argument, experimental studies, Bell's inequalities in quantum optics, nondemolition measurements, quantum coherence, Entanglement and interferometric measurements. Deflection of atoms by light, Kapitza- Dirac effect, Interaction between Atoms and quantized fields- dressed fields, Jaynes - Cummings model.

Module IV

Introduction to quantum bits (Qubits), Representation of qubits using Dirac notation, superposition and entanglement of qubits, basic quantum gates, no-cloning theorem and quantum teleportation, quantum algorithms, quantum computing hardware, applications of quantum computing.

- 1. Quantum Optics -D F Walls, G J Milburn Springer Verlag, 2nd edition (2008) (Text).
- 2. Quantum Optics an Introduction Mark Fox Oxford University Press (2004) (Text).
- 3. Introduction to Quantum Optics From the Semi-classical Approach to Quantized Light, Alain Aspect , Claude Fabre , Gilbert Grynberg, Cambridge University Press, 2010, (Text).
- 4. Introductory Quantum Optics Christopher Gerry and Peter L knight, Cambridge University, 2004.
- 5. Quantum computing for everyone -Chris Bernhardt, MIT Press, Cambridge, 2019 (Text).
- 6. Quantum Computation and Quantum Information: 10th Anniversary Edition, Michael A. Nielsen & Isaac L. Chuang, MIT Press, Cambridge, 2011.
- 7. Optical Coherence and quantum optics, Leonard Mandel, Emil Wolf, Cambridge University Press, 2nd Edition (2013).
- 8. Fundamentals of Quantum Optics- John R Klauder and ECG Sudarshan, Dover publication (2006).
- 9. Quantum Optics- Werner Vogel, Dirk-Gunnar Welsch, Wiley VCH, 3rd edition (2006).

24-812-0709 Advanced Electromagnetic Theory (Level 400)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the frequency dispersion characteristics of dielectrics, conductors, and plasma.	Understand	6	0
CO2	Apply the concepts of the dielectric function of metals to study their roles in defining phenomena like bulk, surface, and localized modes in small particles.	Apply	6	0
CO3	Understand the inhomogeneous electromagnetic wave equation.	Understand	4	0
CO4	Apply the knowledge of retarded fields to study the field of fast moving particles and the mechanism of radiation.	Apply	10	0
C05	Illustrate electromagnetic scattering and antenna theory, including multipole expansion and Dyadic Green's functions, as well as their application in analyzing electric fields.	Understand	8	0
C06	Apply Mie theory, antenna theory and Green's functions for the optical response of nanoscale structures.	Apply	8	0
C07	Understand computational methods in electromagnetics, including analytical solutions and numerical techniques like FDTD and FEM.	Understand	8	0
C08	Apply the analytical methods, FDTD and FEM to analyze electromagnetic response of simple systems.	Analyze	10	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	1	2	1	2	
CO2	3	2	1	1	2	1	2	
CO3	3	2	1	1	2	1	2	
CO4	3	2	1	1	2	1	2	
CO5	3	2	1	1	2	1	2	
CO6	3	2	1	1	2	1	2	
C07	3	2	1	1	2	1	2	
CO8	3	2	1	1	2	1	2	

3-High; 2-Medium; 1-Low

Module I

Frequency dispersion characteristics of dielectrics, conductors and plasma, simple model of dispersion, anomalous dispersion and resonant absorption, low frequency behaviour and conductivity, high frequency behaviour and plasma frequency. Dielectric function of metals, Drude

model, Interband transitions, bulk plasmons, surface modes, localized modes in metallic particles, excitation of the localized modes.

Module II

Inhomogeneous electromagnetic wave equation, Retarded potentials and fields of a continuous charge distribution, Lienard-Wiechert potentials and electric and magnetic fields for a moving point charge, electric dipole radiation, magnetic dipole radiation, radiation by an arbitrary source, radiation pattern and power radiated by a moving point charge, total power radiated by an accelerated charge: Larmor formula and its relativistic generalization, angular distribution of radiation emitted by an accelerated charge, charge, radiation reaction force.

Module III

Electromagnetic scattering and antennas: multipole expansion of potential, field of a dipole in coordinate-free form and plotting it using Octave, electric field due to a uniformly polarized sphere and plotting it using Octave. Dyadic Green's functions, plotting the electric near-field and far-field of a radiating dipole using Green's functions.

Rayleigh and Mie scattering, Mie modes, Mie modes in dielectric particles and their antenna properties.

Dipole antenna, fundamental antenna parameters, half-wave dipole, antenna array and diffraction. Antenna modes in metallic particles of simple geometry, dark and bright modes.

Module IV

Computational methods in electromagnetics: simple systems having analytical solutions, field of a homogeneous sphere placed in a quasi-static electric field, Finite Difference Time-Domain method (FDTD), Finite Element Method (FEM).

- 1. An Introduction to Computational Physics, Tao Pang, 2nd Ed. Cambridge University Press, 2006 (Text).
- 2. Classical Electrodynamics, J. D. Jackson, 3rd Ed. Wiley, 1998 (Text).
- 3. Principles of Nano Optics, Bert Hecht and Lukas Novotny, Cambridge University Press, 2012 (Text).
- 4. Antenna Theory: Analysis and Design, Constantine A. Balanis, 4th Ed. Wiley, 2016 (Text).
- 5. Computational Electrodynamics: The Finite Difference Time-Domain Method, Allen Taflove and Susan C. Hagness, Artech House 1995 (Text).
- 6. Computational Electromagnetics for RF and Microwave Engineering, David B Davidson, Cambridge University Press, 2011 (Text).
- 7. Computational Electromagnetics, Thomas Rylander, Par Ingelström, Anders Bondeson, Springer-Verlag, New York, 2013 (Text).

24-812-0806 Optomechanical Engineering (Level 400)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the principles and materials required for opto-mechanical systems.	Understand	5	3
CO2	Understand basic drawings of optical components and systems.	Understand	6	3
CO3	Analyse the characteristics of the materials for opto-mechanical systems.	Analyse	5	4
C04	Analyse the integrated tolerance	Analyse	6	4
C05	Understand the design and mounting of small mirrors and lenses	Understand	6	4
C06	Understand the various kinematic constraints in mounting	Understand	5	4
C07	Model simple opto-mechanical mounts	Apply	6	4
C08	Understand various methods of fabricating opto- mechanical mounts	Understand	6	4
	Total Number of Hours	1	45	30

CO-PSO Mapping

	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO\PSO	P30 1	P30 2	P30 3	P30 4	P30 5	P30.0	P307	P30.8
CO1	3	3	1	2	1	1		
CO2	3	3	1	2	1	2		
CO3	3	3	1	3	1	3	2	
CO4	3	2	1	3	2	1	2	
C05	3	3	1	2	2	1	2	
CO6	3	3	1	3	3	3	2	
C07	3	3	1	3	3	1		
C08	3	2	1	3	3	1	2	

3-High; 2-Medium; 1-Low

Module I

Basic computerized drawing, drawings of optical components and systems, dimensional tolerances and error budgets. Principles of opto mechanical design-structural and kinematic aspects- vibration control. Materials properties and selection criteria.

Module II

Opto-Mechanical Characteristics of Materials: Materials for opto-mechanical systems - physical, mechanical, thermal properties, dimensional stability, hysteresis, Inhomogeneity and anisotropy, temporal stability, integrated tolerance analysis.

Module III

Design and Mounting of Small Mirrors and lenses, Surface contact mounting, stress variations with surface radius, preload, material, temperature, cemented and air space doublet, linear, tilt and rotary adjustment mechanisms, kinematic constraints and degrees of freedom, coupling methods, design guide lines.

Module IV

Analysis of the Opto-Mechanical Design Interface, structural analysis using Finite Element principles, modelling, analysis and optimization of simple opto-mechanical mounts, optimum design for minimum stress transfer, Fabrication methods.

- 1. Handbook of Optomechanical Engineering, Ahmad, Anees, CRC Press (2017).
- 2. Opto-Mechanical Systems Design, Volume 1_ Design and Analysis of Opto-Mechanical Assemblies, Paul Yoder, Daniel Vukobratovich, CRC Press (2015).
- 3. Optomechanical Systems Engineering, Keith J. Kasunic , Wiley (2015).

CO	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Understand about different type of laser systems.	Understand	8	0
CO2	Understand about classification of lasers.	Understand	7	0
CO3	Understand about laser welding.	Understand	7	0
CO4	Understand about material removal using lasers.	Understand	8	0
C05	Understand about lasers in chemistry.	Understand	8	0
C06	Analyze how lasers can be used to monitor ultrafast processes.	Analyze	7	0
C07	Understand about holography.	Understand	7	0
C08	Analyze applications of holography.	Analyze	8	0
	Total Number of Hours		60	0

24-812-0807 Laser Systems and Laser Applications (Level 400)

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
CO4	3	3	1				1	
C05	3	3	1				1	
C06	3	3	1				1	
C07	3	3	1				1	
C08	3	3	1				1	

3-High; 2-Medium; 1-Low

Module I

Classification of lasers- two level, three level and four level laser systems.

He-Ne laser, Ar -ion laser, Kr- ion laser, He-Cd laser, Copper vapour laser, CO ₂ laser, N₂ laser, Excimer laser, X-ray laser, FEL laser.

Module II

Industrial applications of lasers, Laser welding, laser surface treatments, laser-induced material removal- cutting, scribing, marking.

Module III

Lasers in chemistry- laser isotope separation, laser induced chemical reactions- IR photochemistry. Ultrafast processes in Bio-molecules-monitoring, fast chemical reactions, study of photochemical processes and stimulation photochemical reactions.

Module IV

Holography, Hologram recording and reconstruction, thin and thick holograms, applications of holography in NDT and pattern recognition.

- Laser Fundamentals William T Silfvast, Cambridge University Press, 2nd Edition(2008) (Text).
- 2. Laser Processing and Analysis of Materials- W WDuley, Plenum Press (1983)(Text).
- 3. Industrial applications of lasers- John F Ready, Accademic Press, USA, 2nd Edition, ISBN 0-12-583961-8 (1997)(Text).
- 4. Lasers, Principles, Types and Applications- K R Nambiar, New Age International Delhi (2004), (Text).
- 5. Laser picosecond Spectroscopy and photochemistry of Biomolecules, V S Letokhov(Ed.), Adam Hilger, Bristal and Philadelphia (1987).
- 6. Lasers and Non-linear optics B B Laud, 3rd Edition, New Age International Private Limited, 2011.
- 7. Fundamentals of Photonics- B E Saleh , M Teich, John Wiley Sons 2nd Edition (2007).
- 8. Optical Holography- P Hariharan, Cambridge University Press, 2nd Edition (1996).
- 9. Lasers in Medicine H K KCobener, Wiley Sons.
- 10. Laser Cooling and Trapping H J Metcalf and P Van der Straten, Springer Verlag, (1999).
- 11. Optical computing D G Beitelson , MIT Press, (2000).
- 12. Laser Processing and Chemistry- Dieter Bauerle, Springer Verlag, 3rd Edition (2000).
- 13. Wave Optics and its applications, R S Sirohi, Orient Longmann (2001).
- 14. Spectroscopy, Luminescence and radiation centre in minerals-A S Marfunin, Springer Verlag, NY (1997).
- 15. Luminescence in solids-DRVij, Plenum Press, New York (1998).

24-812-0808 Biophotonics (Level 400)

CO	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Understand the basic theory and science of	Understand	8	0
	interaction of light with cells and tissues.			
CO2	Understand different light delivery systems	Understand	7	0
CO3	Understand fundamentals of optical	Understand	7	0
	imaging			
C04	Analyze different optical imaging	Analyze	8	0
	techniques			
C05	Understand different optical biosensors	Understand	10	0
C06	Understand photodynamic therapy	Understand	5	0
C07	Understand optical tweezers and analyze	Understand	7	0
	its applications			
C08	Analyze different tissue engineering	Analyze	8	0
	techniques using light			
	Total Number of Hours		60	0

CO-PSO Mapping

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
CO4	3	3	1				1	
CO5	3	3	1				1	
C06	3	3	1				1	
C07	3	3	1				1	
CO8	3	3	1				1	
2 Ц;	ah 2 Ma	dium: 1 Lo				-		

3-High; 2-Medium; 1-Low

MODULE I

Photobiology; interaction of light with cells with cells and tissues, Photo-process in Bio polymers human eye and vision, Photosynthesis; Photo-excitation - free space propagation, optical fibre delivery system, articulated arm delivery, hollow tube wave-guides.

Optical coherence Tomography, Fluorescence microscopy, resonance energy transfer imaging

MODULE II

Bio-imaging: Transmission microscopy, Kohler illumination, microscopy based on phase contrast, darkfield and differential interference contrast microscopy, Fluorescence, confocal and multiphoton microscopy.

Applications of bio-imaging; Bio-imaging probes and fluorophores, imaging of microbes, cellular imaging and tissue imaging

MODULE III

Optical Biosensors: Fluorescence and energy transfer sensing, molecular beacons and optical geometries of bio-sensing, Biosensors based on fibre optics, evanescent waves and interferometric Flow Cytometry: basis, flurochromes for flow cytometry, DN Aanalysis. Laser activated therapy; Photodynamic therapy, photo-sensitizers for photodynamic therapy, two photon photodynamic therapy.

MODULE IV

Laser tweezers and laser scissors: design of Laser tweezers and laser scissors, optical trapping using non Gaussian optical beam, manipulation of single DNA molecules, molecular motors, semiconductor Quantum dots for bio imaging. Tissue engineering using light; contouring and restructuring of tissues using laser, laser tissue regeneration

Refences

- 1. Introduction to bio-photonics- P.N. Prasad Wiley Interscience (2003)
- 2. Biomedical Photonics A handbook editor Tuan. Vo Dinh (CRC Press) (2002)

Solar Cells (Level 400)

CO	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Demonstrate the knowledge of semiconductor physics			
	for photovoltaic application.	Understand	6	6
CO2	Apply the principle of solar energy conversion and			
	calculate the conversion efficiency.	Apply	6	6
CO3	Explain the basics of thin film solar cell.	Understand	5	0
C04	Outline the principle on which dye sensitized solar cell			
	works on and its fabrication using novel dyes.	Understand	6	6
C05	Develop understanding of organic solar cell and BHJ			
	solar cells.	Understand	5	0
C06	Demonstrate the basics of perovskite solar cell and its			
	principle and fabrication method	Understand	6	0
C07	Understand the new field of research in solar cell by			
	using nanomaterials and band gap engineering of	Understand	6	6
	these nanomaterials.			
C08	Apply the understanding of connection of solar PV			
	modules and its design to analyze the PV module	Apply	5	6
	power output.			
	Total Number of Hours		45	30

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	2		1		
CO2	3	3	1	3		3		
CO3	3	3	1					
CO4	3	3	1	2		3		
C05	3	3	1					
CO6	3	3	1					
C07	3	3	1					
C08	3	3	1	1		3		

3-High; 2-Medium; 1-Low

Module I

Fundamentals of solar PV cells and systems: semiconductors as basis for solar cells materials and properties, charge carrier generation and recombination, P-N junction, I-V characteristics of solar cells in dark and light, principle of solar energy conversion, conversion efficiency.

Module II

Crystalline silicon and III-V solar cells, thin film solar cells: amorphous silicon, quantum dot solar cells. Dye Sensitized solar cells, fabrication of dye sensitized solar cells, design of novel dyes, design of solid electrolytes materials, counter electrode engineering.

Module III

Introduction to organic solar cells, bulk heterojunction (BHJ) solar cells, morphology and charge separation in BHJ, design of low bandgap polymers.

Perovskite Solar Cells, fabrication of perovskite solar cells, photophysics in perovskite solar cells, stability in perovskite solar cells.

Module IV

Nanomaterials for photovoltaics, PV panels with nanostructures, band gap engineering and optical engineering

Solar PV modules: series and parallel connections, mismatch between cell and module, design and structure, PV module power output

- 1. Solar Photovoltaics: Fundamental, Technologies and Application, Chetan Singh Solanki, Edition 3, PHI Learning Pvt. Ltd., 2015.
- 2. Introduction to Photovoltaics, John Balfour, Micheal Shaw, Sharlene Jarosek, Jones & Bartlett Publishers, 2012.
- 3. Dye-sensitized Solar Cells (Fundamental Sciences, Chemistry), Kuppuswamy Kalyanasundaram, EPFL Press, 1st edition, 2010.
- 4. Organic Solar Cells: Theory, Experiment, and Device Simulation, Wolfgang Tress, Springer Cham, 2014.
- 5. Perovskite Solar Cells: Properties, Application and Efficiency, Muruli Banavoth, Nova science publishers, 2019.
- 6. Nanostructured materials for solar cell application, Katsuaki Tanabe, MDPI books, 2022.

24-812-0901 Industrial Photonics (Level 500)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand various fiber optic components used in optical communication industry.	Understand	8	6
C02	Understand the role of active optical components in optical communication.	Understand	6	
C03	Understand different optical networking terminologies.	Understand	2	8
CO4	Understand various physical network topologies.	Understand	8	
C05	Compare existing wireless access schemes.	Analyze	8	
C06	Analyze the nature of optical wireless channel.	Analyze	8	
C07	Analyze the role of various tools for fiber optic assembly.	Analyze	2	8
C08	practice the use of fusion splicer to make permanent fibre joints.	Apply	3	8
	Total Number of Hours		45	30

CO-PSO Mapping

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	3 3 1	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3-High; 2-Medium; 1-Low

Module I

Optical components for communication, theory and principles of operation, Directional couplers, Variable Optical Attenuator (VOA), Polariser, Polarisation controller, isolators, circulators, multiplexers, wavelength filters, fiber gratings, Arrayed Waveguide Grating (AWG), Dielectric Thin-Film Filters, Active Optical Components, Tunable light sources, Optical switches, Optical amplifiers.

Module II

Introduction to optical networks, Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Layers of optical network, SDH/SONET

Layering, Frame structure, Physical network topologies, Network protection, Access networks, Passive Optical Networks, Optical Interconnects, Data Centers.

Module III

Existing wireless access schemes, Potential optical wireless communication (OWC) application areas, Optical sources, detectors, Nature of optical wireless channel, Hardware aspects of receiver-amplifier in the indoor channel environment, visible light communication, LiFi technology.

Module IV

Fiber Optic Assembly: Reliability requirements, Fiber Optic Standards, Assembly environment:- clean rooms, classification- Tools for Fiber optic assembly- strippers, cleavers-Instruments for test purpose-IL Meter, BR Meter, Optical Spectrum Analyzer, Optical power meters, OTDR, Fiber optic Sources-Fiber joints-connectors, splices, Fusion splicers-Fiber polishing-Fiber cable design and structures-Photonic Packaging-Passive and active component packaging.

- 1. Optical Networks: A Practical Perspective 3rd Edition, R Ramaswamy and Kumar N. Sivarajan, Morgan Kaufmann Publishers, 2010, (Text).
- 2. WDM Optical Networks Concepts, Design and Algorithms, 2002 Sivaram Murthy and Mohan Guruswamy. Prentice Hall, 2001 (Text).
- 3. Understanding Optical Communications, by Harry J.R. Dutton (pdf version http://cs5517.userapi.com/u133638729/docs/3745fff272ed/Dutton_HJR_Understanding_Opti cal_Communications.pdf)
- 4. Optoelectronic Packaging (Wiley Series in Microwave and Optical Engineering), Alan R. Mickelson, Nagesh R. Basavanhally, Yung-Cheng Lee, Wiley Blackwell, 1997.
- 5. WDM Technologies: Active Optical Components, Volume 1, By Niloy K. Dutta, Masahiko Fujiwara, Academic Press, 2002.
- 6. Clean Assembly Practices to Prevent Contamination and Damage to Optics, J. Pryatel, W.H. Gourdin (pdf version available at https://e-reports-xt.llnl.gov/pdf/328839.pdf).
- 7. Advanced Optical Wireless Communication Systems, Shlomi Arnon, John Barry, George Karagiannidis, Robert Schober, and Murat Uysal, Cambridge University Press, 2012.
- 8. Optical Wireless Communications System and Channel Modelling, Z. Ghassemlooy W. Popoola S. Rajbhandari, CRC Press, 2019.

24-812-0904 Quantum Communication (Level 500)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyze the principles of quantum tunnelling and its significance in quantum computing.	Analyze	7	0
CO2	Identify basic applications of the Bloch sphere in visualizing qubit states.	Apply	6	0
CO3	Apply knowledge of qubit metrics to analyze and interpret experimental results, such as spin relaxation time and decoherence time.	Apply	6	0
CO4	Discuss the practical implications of utilizing specific qubit modalities in quantum computing applications.	Analyze	8	0
C05	Analyze quantum circuits for specific computational tasks, incorporating quantum gates and entanglement.	Analyze	7	0
CO6	Evaluate the significance of DiVincenzo's criteria in assessing the feasibility and effectiveness of quantum computation systems.	Evaluate	8	0
C07	Describe the significance of the EPR paradox and density matrix formalism in quantum communication.	Underst and	9	0
C08	Demonstrate an understanding of basic principles underlying quantum communication protocols.	Underst and	9	0
	Total Number of Hours	1	60	0

Pre-requisite: 24-812-0404 Quantum Mechanics I & 24-812-0501 Quantum Mech	anics II
······································	

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	
CO1	3	2		1					
CO2	3	2		1					
CO3	3	2		1					
CO4	3	2		1					
CO5	3	2		1					
C06	3	2		1					
C07	3	2		1					
C08	3	2		1					
2.11.									

3-High; 2-Medium; 1-Low

Module I

Quantum tunnelling, Stern and Gerlach experiment, Bloch sphere representation, Qubit rotations, Projective measurements, The vocabulary of quantum computing, Classical computers, Qbits and usability, Noisy intermediate scale quantum technology.

Module II

Qbit Metrics: Spin relaxation time, Dephasing time, Decoherence time, Hann echo, Ramsay experiment, Gate time, Gate fidelity.

Qbit Modalities: Trapped ion qubit, Superconducting transmons, Topological qubits, Quantum dots, Dilution refrigerator.

Module III

Quantum circuits, Quantum gates, The compute stage, Quantum entanglement, No-cloning theorem, Quantum teleportation, Quantum interference, Phase kickback, DiVincenzo's criteria for quantum computation.

Module IV

EPR paradox, Density matrix formalism, Von Neumann entropy, Entangled photons, Quantum communication, quantum channel, Quantum communication protocols, RSA security.

- 1. Fundamentals of Quantum Computing: Theory and Practice, V Kasirajan, Spinger Switzerland, 2021.
- 2. Quantum Computation and Quantum Information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press, 2010.
- 3. Quantum Information Theory and the Foundations of Quantum Mechanics, Christopher G. Timpson, Cambridge University Press, 2013.
- 4. Introduction to Topological Quantum Matter & Quantum Computation, Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, Cambridge University Press, 2013.

24-812-0905 Ultrafast Optics (Level 500)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyse the significance and applications of ultrashort laser pulses.	Analyze	7	0
CO2	Demonstrate proficiency in Electric Field Autocorrelation and Cross-Correlation Measurements for pulse analysis.	Apply	6	0
CO3	Evaluate advanced techniques like Frequency- Resolved Optical Gating for pulse characterization.	Apply	6	0
C04	Analyze the effects of Group Velocity Dispersion on pulse propagation and optical components.	Analyze	8	0
C05	Evaluate Ultrafast Nonlinear Optics phenomena, including Forced Wave Equation and Modulational Instability.	Analyze	7	0
C06	Analyze Pump–Probe techniques for time-resolved spectroscopy.	Evaluate	8	0
C07	Evaluate principles of Terahertz Time-Domain Electromagnetics, including pulse generation and spectroscopy.	Understan d	9	0
C08	Analyze Acousto-optic Dispersive Filters, understanding their advantages in pulse shaping.	Analyze	9	0
	Total Number of Hours		60	0

Pre-requisites: 24-812-0601 Laser Physics & 24-812-0703 Non-Linear Optics

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	3	3	1	1			
CO2	3	3	1	1			
CO3	3	3	1	1			
CO4	3	3	1	1			
CO5	3	3	1	1			
CO6	3	3	1	1			
C07	3	3	1	1			
CO8	3	3	1	1			

3-High; 2-Medium; 1-Low

Module I

Introduction to ultrashort laser pulses: significance and application of ultrashort pulses, overview of ultrashort pulse generation techniques. Introduction to Ultrashort Pulse Generation Through Mode-Locking.

Solid-State Laser Mode-Locking Using the Optical Kerr Effect: Nonlinear Refractive Index Changes, Self-Amplitude Modulation, Self-Phase Modulation, and Group Velocity Dispersion, Additive Pulse Mode-Locking, Kerr Lens Mode-Locking

Module II

Ultrashort Pulse measurement method: Electric Field Autocorrelation Measurements, Electric Field Cross-Correlation Measurements and Spectral Interferometry. Correlation Measurements Using Second-Harmonic Generation, Chirped Pulses and Measurements in the Time–Frequency Domain. Frequency-Resolved Optical Gating and Pulse Measurements, Pulse Measurements Based on Frequency Filtering.

Module III

Group Velocity Dispersion, Dispersion of Optical Components, Measurements of Group Velocity Dispersion.

Ultrafast Nonlinear Optics: Forced Wave Equation in Frequency and Time Domain, SHG with pulse, three wave interaction, propagation equation for nonlinear refractive index media, Self-Phase modulation, pulse compression, Modulational instability, solitons and Higher order propagation effects.

Module IV

Fourier Transform Pulse Shaping, Direct Space-to-Time Pulse Shaping, Acousto-optic Dispersive Filters and their advantages. Chirp Processing and Time Lenses, Ultrashort-Pulse Amplification. Ultrafast Time-Resolved Spectroscopy: Degenerate Pump–Probe Transmission Measurements, Nondegenerate and Spectrally Resolved Pump–Probe. Generation and Measurement of Terahertz Pulses, Terahertz Spectroscopy and Imaging

- 1. Ultrafast Optics by Andrew Weiner (John Wiley & Sons, 2009) (Text).
- 2. Principles of Lasers by Orazio Svelto (5th ed., Springer, 2010).
- 3. Nonlinear Optics by Robert Boyd (3rd ed., Academic Press, 2008).
- 4. Ultrafast Optics by Franz X. Kärtner (from MIT course 6.638 offered in Fall 2008).

24-812-0906 Plasma Physics (Level 500)

CO	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Explain the concept of plasma parameters.	Understand	6	
CO2	Analyse the dynamics of charged particle in Electric and magnetic field.	Analyze	6	
CO3	Discuss the drift of charged particles under combinations of fields.	Understand	8	
CO4	Explain the dynamics of charged particles under time varying fields.	understand	8	
CO5	Illustrate the kinetic and fluid description of plasma.	Analyze	8	
C06	Explain plasma instabilities and its classification.	Understand	8	
C07	Discuss the technical application of plasma.	Understand	8	
C08	Explain the laser produced plasma and its diagnostics.	Understand	8	
	Total Number of Hours		60	0

CO-PSO Mapping

	DGG (Baaa				BGG (
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
CO4	3	3	1				1	
CO5	3	3	1				1	
C06	3	3	1				1	
C07	3	3	1				1	
C08	3	3	1				1	

3-High; 2-Medium; 1-Low

Module I

Plasma State: Definition of Plasma, concept of plasma temperature, Debye shielding, quasineutrality, plasma parameters, plasma approximation, natural existence of plasma, application of plasma, dynamics of charged particles in electro-magnetic fields.

Module II

Drift of charge particle under different combination of electric and magnetic field, crossed electric and magnetic field, homogeneous electric and magnetic field spatial and time varying electric and magnetic field.

Module III

Kinetic theory of Plasma, Vlasov equations, solution of linearized Vlasov equation, Langmuir waves, Ion-sound waves, wave-particle interaction and Landau damping. Boltzmann equation, Saha equation, Boltzmann's H Theorem.Maxwell velocity distribution conducting fluids, fundamental equation of magneto hydrodynamics (MHD), magnetic confinement, Plasma instabilities and classification.

Module IV

Thermonuclear fusion, Requirements for fusion plasmas- confinement, Tokamak fusion reactors, dusty plasma in laboratory and space, waves in dusty plasma. Laser plasma interaction, Inertial confinement, High-harmonic generation, Laser wakefield electron accelerator, X-ray laser.

- 1. Fundamentals of Plasma Physics, J A Bittencourt, Third Edition, Springer, New York, 2004 (Text).
- 2. Introduction to Plasma Physics and Controlled Fusion, Francis F Chen, Second Edition, Plenum, New York ,1984 (Text).
- 3. Fundamentals of Plasma Physics, Paul M Bellan, Cambridge University Press, 2006.
- 4. Introduction to Plasma Theory, D R Nicholson, John Wiley & Sons, New York, 1983.
- 5. The Physics of Laser Plasma Interaction, W L Kruer, Cambridge University Press, 1988.

24-812-0907 Microscopic Techniques (Level 500)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the basic concepts of instrumentation of optical microscopy.	Understand	7	
CO2	Evaluate the designs and specifications of different elements of an optical microscope.	Analyze	8	
CO3	Interpret phase contrast, dark-field, and polarization microscopy.	Understand	7	
C04	Analyze confocal, two-photon, multi-photon and laser scanning microscopic techniques.	Analyze	8	
CO5	Compare super-resolution microscopy techniques for enhanced resolution and application-specific selection.	Apply	8	
C06	Analyze classical resolution limits and apply super- resolution principles to specific microscopy techniques.	Analyze	7	
C07	Understand resolution, electron-matter interaction, and instrument limitations of electron microscopes.	Understand	7	
C08	Apply scanning probe microscopy basics, demonstrating understanding of electron tunneling, atomic forces, and their application on surfaces.	Apply	8	
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	2	1	1	2	
CO2	3	3	1	2	1	1	2	
CO3	3	3	1	2	1	1	3	
CO4	3	3	1	2	1	1	3	
C05	3	3	1	2	1	1	3	
C06	3	3	1	2	1	1	3	
C07	3	3	1	2	1	1	2	
C08	3	3	1	2	1	1	3	

3-High; 2-Medium; 1-Low

Module I

Optical components of a light microscope, aperture and image plane, Koehler illumination, microscope illuminators, filters, effect of light on living cells, designs and specifications of objective lenses, condensers, oculars, microscope slides and cover slips.

Diffraction image of a point source of light, Abbe's theory of image formation in the microscope, numerical aperture, spatial resolution, depth of field and depth of focus, optimizing the microscope image.

Module II

Phase contrast microscopy: the behaviour of waves from phase objects in bright-field microscopy, the role of differences in optical path lengths, optical design of the phase contrast microscope, interpreting the phase contrast image.

Dark-field microscopy: theory, image interpretation

Polarization microscopy: optics of the polarizing microscope, retardation plates, Sénarmont compensator, Brace-Koehler compensator.

Fluorescence Microscopy: physical basis of fluorescence, properties of fluorescent dyes, autofluorescence of endogenous molecules, arrangement of filters and the epi-illuminator, objective lenses and spatial resolution.

Confocal microscopy: optical principle of confocal imaging, advantages of confocal laser scanning microscopy.

Two- and multi-photon laser scanning microscopy.

Module III

Super resolution microscopy: classical resolution limit, near-field optical microscopy, I⁵M microscopy, 4Pi microscopy, stimulated emission depletion (STED) microscopy, structured illumination spectroscopy, photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and fluorescent photoactivation localization microscopy (FPALM).

Module IV

Transmission and scanning electron microscopy: use of electrons for microscopy, resolution, interaction of electron with matter, depth of field and depth of focus, limitations of TEM, STEM, basic TEM instrumentation.

Scanning probe microscopy: basic principles, electron tunnelling, principles of atomic forces, theory of scanning tunnelling microscopy, metal and semiconductor surfaces.

- 2. Fundamentals of Light Microscopy and Electronic Imaging, Douglas B. Murphy and Michael W. Davidson, second edition, Wiley-Blackwell, 2013.
- 3. Transmission Electron Microscopy: A Textbook for Materials Science, David B. Williams and C. Barry Carter, Springer; 2nd edition, 2009.
- 4. https://zeiss-campus.magnet.fsu.edu/articles/superresolution/introduction.html.
- 5. Super resolution microscopy, Udo J. Birk, Wiley-VCH, 2017.
- 6. https://www.frontiersin.org/articles/10.3389/fchem.2021.746900/full.
- 7. Super resolution optical microscopy: The quest for enhanced resolution and contrast, Barry R. Masters, Springer Series in Optical Sciences, 2020.
- 8. Scanning probe microscopy and spectroscopy: theory, techniques, and applications second edition, edited by Dawn A. Bonnell, Wiley-VCH, 2001.

INTERNATIONAL SCHOOL OF PHOTONICS (ISP)

COURSE STRUCTURE AND SYLLABI

of

Master of Technology (Optoelectronics and Laser Technology)

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI - 682 022

2024

Program Specific Outcomes (MTech OE<))

PSO1: Acquire knowledge in the principles of light-matter interactions and photonics related areas of physics.

PSO2: Enhance knowledge in sub-domains of laser physics, fibre optics, optoelectronics and optical communications through specific courses.

PSO3: Develop proficiency in experimentation, data acquisition and interpretation in advanced topics of laser technology and optical communication technology.

PSO4: Execute major project in advanced topics of photonics to acquire skills in solving complex problems.

PSO5: Familiarise with modern equipment and complex tools employed in photonics and optoelectronics.

PSO6: Foster skills in processing scientific data and its presentation.

PSO7: Address the societal needs through outreach programmes and extension activities.

SCHEME

M.Tech Optoelectronics and Laser Technology (2024 Admission onwards)

Semester I

Sl.	Course Code	Course Title	Core	Cred	L-T-P	CA	ESE	Total
No			/Elec	its				marks
			tive					
1	24-441-0101	Modern Optics	С	4	3-1-0	50	50	100
2	24-441-0102	Laser Technology	С	4	3-1-0	50	50	100
3	24-441-0103	Optoelectronics	С	4	3-1-0	50	50	100
4	24-441-0104	Lab 1	С	2	0-0-4	100		100
5	24-441-0105	Literature Review	С	1	1-0-0	100		100
6	24-441-0106	Research	С	3	3-0-0	0	100	100
		Methodology						
		(MOOC)						
7	24-441-010X	Elective I	Е	3	3-0-0	50	50	100
			Total	21		450	250	700

Elective I

24-441-0107: Advanced Engineering Physics

24-441-0108: Digital Communication

24-441-0109: Nonlinear Optics

Semester II

Sl. No	Course Code	Course Title	Core/ Electi	Cred its	L-T- P	CA	ESE	Total marks
NO			ve	115	Г			IIIdI KS
1	24-441-0201	Fibre Optics & Applications	С	4	3-1-0	50	50	100
2	24-441-0202	Optical Communication Technology	С	4	3-1-0	50	50	100
3	24-441-020X	Elective II	Е	3	3-0-0	50	50	100
4	24-441-0203	Lab 2	С	3	0-0-6	100		100
5	24-441-0204	Seminar	С	1	1-0-0	100		100
6	24-441-0205	Minor Project	С	2	0-0-4	100		100
			Total	17		450	150	600

Elective II

24-441-0206: Advanced Laser Technology

24-441-0207: Nonlinear Optics

24-441-0208: Nano-Biophotonics

Semester III

Sl.	Course Code	Course Title	Core/	Cred	L-T-P	CA	ESE	Total
No			Electi	its				marks
			ve					
1	24-441-0301	Project and Viva	С	10	0-0-20	300		300
2	24-441-030X	Elective III	Е	3	3-0-0	50	50	100
3	24-441-0302	Open Elective	Е	3	3-0-0	0	100	100
		(MOOC)						
4	24-441-0303	Internship	С	2		100		100
			Total	18		250	250	600

Elective III

24-441-0304: Laser Spectroscopy

24-441-0305: Computational photonics

Internship

Students have to complete an internship of 2 credits (60 Hours of work) before the beginning of Semester IV.

Semester IV

Sl. No	Course Code	Course Title	Core/ Electi	Credit	L-T-P	CA	ESE	Total mark
NO			ve	3				S S
1	24-441-0401	Project and Viva	С	18	0-0-36		500	500
			Total	18			500	500

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the propagation of light in conducting and non-conducting media	Understand	5	
CO2	Understand reflection/transmission behaviour of light interacting with a dielectric interface	Understand	5	
CO3	Describe the operation of optical devices, including, polarisers, retarders and modulators	Understand	5	6
CO4	Have an understanding of light coherence, the coherent properties of light from various sources, and the measurement of degrees of coherence	Understand	4	4
CO5	Analyze the polarization state of a beam of light	Analyze	4	4
C06	Use the principles of wave motion and superposition to explain the physics of polarization, dispersion, interference and diffraction	Apply	4	4
C07	To compare the effects of Fraunhoffer and Fresnel diffraction	Analyze	6	4
C08	Apply matrix methods for analysing ray propagation	Apply	4	
C09	Describe the concept of wavefront distortion	Understand	4	4
CO10	Use Fourier transform theory to predict and interpret imaging under various Fourier transform filtering conditions.	Apply	4	4
	Total Nu	mber of Hours	45	30

24-441-0101 Modern Optics

CO-PSO Mapping

mpp8											
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7				
CO1	3	3	1								
CO2	3	3	1								
CO3	3	3	1								
CO4	3	3	1								
CO5	3	3	1			2					
C06	3	3	1			2					
C07	3	3	1			2					
C08	3	3	1			1					
CO9	3	3	1			1					
CO10	3	3	1			1					

3-High; 2-Medium; 1-Low

Module I

Light in bulk matter, scattering and absorption, dispersion, transmission and index of refraction, Fresnel's equations, boundary conditions on an interface, complex refractive index, evanescent wave, refraction at spherical surfaces, thin lens combinations, aspherical mirrors, lens systems, analytical ray tracing, matrix methods, superposition of waves, standing wave, phase and group velocities, propagation of light waves in a dielectric, dispersion equation, electromagnetic waves in a conducting medium.

Module II

Interference of light: conditions for interference, Fresnel – Arago Laws, interference of mutually coherent beams, Young's double slit experiment, effects of finite coherence length, interference in dielectric films, film thickness measurement by interference, multiple beam interference, Michelson's interferometer, Mach-Zehnder interferometer, Fabry- Perot interferometer, Interference filters, variable input frequency Fabry- Perot interferometer, mode suppression with an etalon, Sagnac effect, Sagnac interferometer. Coherence – temporal coherence and line width, partial coherence, spatial coherence width.

Module III

Polarisation: Generation of polarised light, mathematical representation of polarised light, jones vectors, polarisers, Jones matrices, birefringence, polarisation ellipse, retarders, optical activity, different polarization states, Stokes parameters and their measurements, optical modulators-photoelasticity, Faraday effect, Kerr and Pockels effects, electro optic modulation, magneto optic effects, magneto optic liquid crystal variable retarder.

Module IV

Theory of Diffraction: Kirchoff's theorem. Fresnel- Kirchoff integral formula and its application to diffraction problems. Fraunhofer and Fresnel diffraction: Fraunhofer diffraction by single slit, double slit, multiple slits, rectangular aperture, circular aperture, resolution of imaging systems, diffraction grating, Fresnel diffraction: free propagation of a spherical wave, the vibration curve, circular apertures, circular obstacles, Fresnel zone plate, Fresnel integrals. Matrix methods in ray propagation, rays in a lens-like medium, Propagation of beams, Gaussian beam propagation. ABCD law, focussing of Gaussian beams.

Module V

Elements of Fourier optics: Fourier transforms, one and two dimensional transforms, transform of a cylinder function, lens as a Fourier transform element, concept of spatial frequencies, effect of lens on a wave front, Fourier transform spectroscopy, theory of imaging, elements of adaptive optics, principles of adaptive optics, wave front distortion, wave front sensors, wave front reconstruction (qualitative treatment).

- 1. Optics, Eugene Hecht, A.R. Ganesan, Pearson Education, 4th Edition, 2016 (text).
- 2. Introduction to Optics, Frank L. Pedrotti, S.J., Leno M. Pedrotti, Leno S. Pedrotti, Pearson, 3rdEdition, 2012 (Text).
- 3. Optics, Ajoy Ghatak, Tata McGraw Hill, 3rd edition, 2005
- 4. Fundamentals of Photonics, Saleh and Teich, Wiley India Pvt. Ltd., 2nd edition, 2012.
- 5. Optical Physics, Ariel Lipson, Stephen G. Lipson, and Henry Lipson, Cambridge University Press, 4th Edition, 2011
- 6. Modem Optics, R.D. Guenther, John Wiley, 1990.
- 7. Quantum Electronics, Amnon Yariv, Academic Press, 1998.
- 8. Principles of optics, Bom and Wolf Cambridge University Press, 1981.
- 9. Adaptive optics in Astronomy, Francois Roddier, Cambridge University Press, 2004.
- *10.* Wave Optics and applications, R S Sirohi, Orient Longmann, 2001.

24-441-0102 Laser Technology

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain different electron oscillator models	Understand	6	
CO2	Describe emission and absorption of radiation	Understand	6	
CO3	Describe the requirements for laser action	Understand	8	
CO4	Describe rate equations and solve them for different level-system	Evaluate	8	
C05	Identify the requirements for pulse shortening techniques	Analyze	6	
C06	Describe techniques for q-switching and mode-locking	Evaluate	6	
C07	Predict the stability of lasers	Apply	6	
C08	Explain the generation of higher order modes	Understand	6	
CO9	Identify different lasers for a particular application	Analyze	6	
CO10	Review safety requirements of lasers	Understand	2	
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1	1001	1000	1000	1007
			_				
CO2	3	3	1				
CO3	3	3	1				
C04	3	3	1			3	
C05	3	3	1				
C06	3	3	1		2	2	
C07	3	3	1				
C08	3	3	1				
CO9	3	3	1				
CO10	3	3	1				

³⁻High; 2-Medium; 1-Low

Module I

Electron Energy Levels in atoms, Molecular vibrations, molecular rotations, Energy bands in solids, Electron oscillator model-classical and quantum, Spontaneous emission, absorption, thermal radiations-Planck's radiation law, emission and absorption of narrowband light, Line

Broadening mechanisms - Collisional broadening, Doppler broadening, Absorption and gain coefficients.

Module 2

Gain and feedback, Threshold, photon rate equations, population rate equations, three-level and four level laser scheme, pumping three and four level lasers, saturation, small signal gain and saturation, spatial hole burning, spectral hole burning, lamb dip, frequency pulling, obtaining single mode oscillation, laser line width, polarization and modulation, frequency stabilization, laser at threshold.

Module 3

Rate equations for intensities and populations, relaxation oscillations, Q-switching, methods of Q-switching, Multimode laser oscillation, phase-locked oscillators, mode-locking, amplitude - modulated mode locking, frequency-modulated mode locking, methods of mode-locking, amplification of short pulses, amplified spontaneous emission, ultrashort light pulses.

Module 4

Ray matrix, resonator stability, paraxial wave equations, Gaussian beams, ABCD matrix for Gaussian beams, Gaussian Beam modes, Hermite-Gaussian and Laguerre-Gaussian beams, Diffraction by an aperture, diffraction theory of resonators, Beam quality, Unstable resonators for high-power lasers, Bessel beams.

Module 5

Electron-impact excitation, Excitation transfer, He-Ne laser, rate equation model in He-Ne laser, CO_2 electric discharge lasers, gas-dynamic lasers, Chemical lasers, excimer lasers, dye lasers, optically pumped solid state lasers, fiber amplifiers and lasers, ultra short and super intense pulses.

- 1. Laser Physics, Peter W Milonni and Joseph H Eberly, Wiley, 2010 (Text)
- 2. Laser Fundamentals, W T Silfvast, Second Edition, Cambridge University Press, 2008 (Text)
- 3. Principles of Lasers, O Svelto, Fourth Edition, Springer, 1998
- 4. Lasers, Anthony E Siegman, University Science Books, 1986
- 5. Lasers Fundamentals and Applications, K Thyagarajan and A Ghatak , Springer, 2010

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyze the energy band structure of semiconductors to differentiate between direct and indirect bandgap materials	Understand	5	0
CO2	Design basic circuits utilizing semiconductor principles, evaluating dynamic resistance and capacitance in pn junctions	Apply	5	0
CO3	Evaluate LED materials, structures, and efficiencies to optimize luminous flux characteristics for various applications	Analyze	6	0
CO4	Apply LED principles in optical fiber communications, designing circuits for efficient data transmission	Apply	6	0
C05	Apply the Shockley-Ramo theorem to assess external photocurrent in various photodetectors, considering noise characteristics	Apply	6	0
C06	Analyze the characteristics and applications of advanced photodetector technologies, such as avalanche photodiodes and pin photodiodes	Evaluate	7	0
C07	Assess the efficiencies and structures of various sensors and solar cells, optimizing performance for specific applications	Analyze	8	0
C08	Apply principles of absorption, emission, and luminescence spectroscopy in material analysis and characterization	Apply	5	0
CO9	Apply principles of optical computing, including QSD arithmetic and symmetric coding, in designing efficient computational systems		6	0
CO10	Design optical logic gates, backplane buses, and memory cells for implementing optical computing architectures, optimizing for speed and efficiency	Apply	6	0
	Total Number of Hours		60	0

24-441-0103 Optoelectronics

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1				
CO2	3	3	1				
CO3	1	3	3				
CO4	1	3	3				
C05	3	3	1				
C06	1	3	3		2	2	
C07	3	3	1				
C08	3	3	1				
CO9	1	1	3				
CO10	1	1	3				

3-High; 2-Medium; 1-Low

Module I

Review of semiconductor concepts and energy bands, Semiconductor statistics, Extrinsic semiconductors, Direct and indirect bandgap semiconductors, pn Junction principles, pn junction reverse current, pn junction dynamic resistance and capacitances, recombination lifetime, pn junction band diagram, Heterojunctions.

Module II

Light-emitting diodes: Principles, Homo junction and hetero junction LEDs, Quantum well LEDs, LED materials and structures, LED efficiencies and luminous flux, Basic LED characteristics, LEDs for optical fibre communications, Phosphors and white LEDs, LED electronics, Semiconductor lasers.

Module III

Principle of the pn Junction photodiode, Shockley-Ramo theorem and external photocurrent, Absorption coefficient and photodetector materials, Quantum efficiency and responsivity, The pin photodiode, Avalanche photodiode, Heterojunction photodiodes, Schottky junction photodetector, Phototransistors, Photoconductive detectors, Basic photodiode circuits, Noise in photodetectors.

Module IV

Image sensors: CMOS and CCD

Photovoltaic devices: Solar cells, Basic principles, Operating current and voltage, and Fill factor, Equivalent circuit of a solar cell, Solar cell structures and efficiencies.

Optical spectroscopy: Absorption spectroscopy, Emission spectroscopy, Luminescence spectroscopy.

Module V

Optical computing: QSD arithmetic, Symmetric coding, Optoelectronic implementation, Artificial neural networks, Optical implementation of neural networks, Optical architecture for pattern association, Optical logic gates, Optical backplane buses, Binary memory cell and Optical switches.

- 1. Optoelectronics and Photonics: Principles and Practices (Second Edition), S O Kasap, Pearson 2023 (Text)
- 2. Optoelectronic Devices and Systems (Second Edition), S C Gupta, PHI Learning Pvt Ltd 2015 (Text)
- 3. Optoelectronics Sensors and Instrumentation, M K Ghosh, Ed-Tech New Delhi 2018.
- 4. Semiconductor Optoelectronic Devices (second edition), Pallab Bhattacharya, Pearson 2017.

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Articulate a focused research question or topic, guiding the literature review effectively.	Apply	2	0
CO2	Conduct systematic searches for relevant literature using academic databases and other scholarly sources.	Apply	2	0
CO3	Evaluate the credibility, relevance, and quality of sources, ensuring the reliability and validity of the literature review.	Evaluate	4	0
CO4	Organize literature based on themes and synthesize information to identify patterns, trends, contradictions, and gaps in the research.	Analyze	3	0
C05	Write coherent, well-structured literature reviews with accurate citations using the APS style, ensuring adherence to academic integrity standards.	Create	4	0
	Total Number of Hours		15	0

24-441-0105 Literature Review

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1			1	2	1	3	1
CO2			1	2	1	3	1
CO3			1	2	1	3	2
CO4			1	2	1	3	1
CO5			1	2	1	3	2

3-High; 2-Medium; 1-Low

A literature review is an essential component of academic research, providing a comprehensive overview and analysis of existing literature relevant to the topic of study. Here are the key steps and components required for a literature review:

- 1. Define your research question or topic: Clearly articulate the focus of your literature review. What specific aspect of the subject are you exploring?
- 2. Search for relevant literature: Conduct comprehensive searches using academic databases, libraries, online journals, and other sources to identify relevant literature. Use appropriate keywords and search terms related to your topic.
- 3. Evaluate sources: Critically evaluate the credibility, relevance, and quality of the sources you find. Consider factors such as the author's expertise, publication date, peer-review status, and methodology.
- 4. Organize the literature: Categorize the literature based on themes, concepts, theories, or methodologies relevant to your research question. Develop a clear organizational structure for your review.

- 5. Summarize key findings: Provide concise summaries of the main findings, arguments, and conclusions of each source. Highlight key points that contribute to your understanding of the topic.
- 6. Identify gaps in the literature: Analyze the existing literature to identify areas where further research is needed or where there are gaps in knowledge. This can help justify the significance of your own research.
- 7. Synthesize and analyze: Synthesize the information from the various sources to identify patterns, trends, contradictions, and debates within the literature. Offer your analysis and interpretation of the existing research.
- 8. Write the literature review: Write a coherent and well-structured review that includes an introduction, body paragraphs organized around key themes or concepts, and a conclusion that summarizes the main findings and implications of the literature.
- 9. Cite sources properly: Make sure to cite all sources properly using the APS citation style ([1] Author(s), "Title of the paper," Journal Abbreviation, volume number, page range (year)). Accurate citation is crucial for avoiding plagiarism and giving credit to the original authors.
- 10. Check for plagiarism: Utilize the plagiarism check tool available in the University library to ensure originality. Append a certificate of plagiarism with the review report to demonstrate adherence to academic integrity standards.
- 11. Revise and edit: Review your literature review carefully, revising for clarity, coherence, and accuracy. Edit for grammar, punctuation, and formatting errors to ensure your review meets academic standards.

Follow these steps to create a thorough and well-structured literature review that contributes to the existing body of knowledge on your chosen topic.

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand crystal structure and its correlation with material properties and electronic transitions in periodic crystals.	Understand	5	0
CO2	Differentiate between Fermions and Bosons and their statistical distribution.	Understand	5	0
CO3	Apply Schrödinger equation and Dirac algebra in the presence of various external potentials and the harmonic oscillator system.	Apply	6	0
CO4	Understand various quantum effects in materials	Understand	8	0
CO5	Construct Hamiltonians and solve eigenvalue problems in the presence of perturbations	Apply	6	0
C06	Analyze transition probabilities in perturbative systems using Fermi's Golden rule	Analyze	6	0
C07	Apply Maxwell's equations and the concept of harmonic oscillator to quantize electromagnetic radiations	Analyze	4	0
C08	Understand coherent and squeezed light and the interaction of radiation with matter	Understand	8	0
CO9	Understand the basic principles of Raman spectroscopy	Understand	6	0
CO10	Analyze rotational and vibrational spectra of molecules.	Analyze	6	0
	Total Number of Hours	60	0	

24-441-0107 Advanced Engineering Physics

CO-PSO Mapping

0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	3			1	
CO2	3	3	1			1	
CO3	3	3	3			1	
CO4	3	3	1			1	
CO5	3	3	1			1	
CO6	3	3	3			1	
C07	3	3	1			1	
C08	3	3	1			1	
CO9	3	3	3			1	
CO10	1	3	3			1	

3-High; 2-Medium; 1-Low

Module 1

Concepts of crystal structure, crystal planes, Miller indices, Bravais lattices, reciprocal lattices, the concept of Brillouin zones, zone boundary, Bosons and Fermions, Fermi-Dirac and Bose-Einstein distribution, bonding in crystals, Blöch theorem, band theory.

Module 2

Concept of basis and base vectors, Dirac algebra, operators in quantum mechanics, Hermitian and Unitary operators, wave-particle duality, uncertainty relations, Schrödinger equations, particle in a box, quantization of energy levels, harmonic oscillator, electrons in periodic potential, origin of energy bands in solids, the concept of the potential barrier, quantum effects in two dimensional, One dimensional, and zero-dimensional materials.

Module 3

Particle in spherically symmetric potential, spin angular momentum, concept of degenerate and non-degenerate perturbation theory, time-dependent perturbation, Stark effect, Fermi's golden rule, radiative transition rate, selection rules.

Module 4

Maxwell's equations, electromagnetic spectrum, quantization of electromagnetic field, Number states, coherent and squeezed light, interaction of electromagnetic radiation with matter.

Module 5

Rotational spectra of diatomic molecules, intensity of spectral lines, non-rigid rotator, vibrational spectra of diatomic and polyatomic molecules, anharmonic oscillator, diatomic vibrating-rotator. quantum and classical theory of Raman spectroscopy.

- 1. Concepts of Modern Physics (Ninth Edition), Arthur Beiser and Shobhit Mahajan, McGraw Hill Education, 2009
- 2. Solid State Physics (Third Edition), M A Wahab, Narosa Publications, New Delhi, 2015.
- 3. Quantum Optics, Mark Fox, Oxford University Press, New York, 2006.
- 4. Introduction to Solid State Physics (Eighth Edition), Charles Kittel, Wiley, 2012.
- 5. Solid State Physics (Third Edition), David Ashcroft and Mermin, CENGAGE Learning, 2003.
- 6. Introduction to Quantum Mechanics, J. Griffiths David, Pearson, 2015.
- 7. Modern Quantum Mechanics, J. J. Sakurai and Jim Napolitano, Cambridge University Press, 2017.
- 8. Introductory Quantum Optics (First Edition), Christopher Gerry and Peter Knight, Cambridge University Press, 2004.
- 9. Fundamentals of Molecular Spectroscopy (Fourth Edition), C N Banwell, McGraw Hill Education, (2017).

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the concepts of sampling, scaling and digital systems.	Analyze	6	0
CO2	Identify the importance of pulse shaping and minimum bandwidth requirement.	Analyze	6	0
CO3	Understand the basics of equalization and synchronization techniques.	6	0	
CO4	Analyze a basic PCM system and interpret the performance parameters of its various modified schemes.	Analyze	6	0
CO5	Understand the concept of Information theory, Entropy and Mutual Information.	6	0	
C06	Use the concepts of information theory and coding for mathematical modelling and analysis of communication systems.	Apply	6	0
C07	Familiarize with the different types of errors found while transmitting data.	Understand	6	0
C08	Discuss the significance and performance analysis of error detection and correction strategies employed in digital communication systems.	Understand	6	0
C09	Understand the significance of 5G in mobile networks and familiarize with the uses and applications.	Understand	6	0
CO10	Study the core and access networks of the 5G Mobile network and compare it with previous generation mobile networks.	Understand	6	0
	Total Numbers of Hours		60	0

24-441-0108 Digital Communication

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	1	1			1	
CO2	3	1	1			1	
CO3	3	1	1			1	
CO4	3	1	1			1	
CO5	3	1	1			1	
CO6	3	1	1			1	
C07	3	1	1			1	
C08	3	1	1			1	
C09	3	1	1			1	
CO10	3	1	1			1	

3-High; 2-Medium; 1-Low

Module I

Digital Signals and Systems: sampling, scaling, spectral analysis of band pass digital signals, Digital PAM, PFM, PPM signals, binary PAM formats, digital systems, band-limited digital PAM systems, bandwidth considerations, Line coding, binary error probabilities, regenerative repeaters, eye diagram, Nyquist pulse shaping.

Module II

Equalization, Synchronization and Modulation, equalization, synchronization techniques, Carrier, symbol/bit and frame synchronization, digital CW (Continuous Wave) modulation, PCM (Pulse Code Modulation), PCM generation and reconstruction of multiplexing PCM signals, DPCM, Adaptive DPCM, DM and its drawbacks, Adaptive Delta Modulation, Amplitude, Phase and Frequency modulation methods.

Module III

Information theory, concept of amount of information and its properties, applications of information theory, average information, entropy, effective complexity, coding to increase average information per bit, Hartley Shannon's Theorem, channel capacity, bandwidth, S/N trade-off, data compression.

Module IV

Error Detection and Correction, types of errors, error detection techniques, simple parity check, 2D parity check, checksum, cyclic redundancy check, error correction techniques, error correcting codes, block code, convolutional code, cyclic code, hamming code, parity code, repetition code, forward and backward error, correction methods, Automatic Retransmission Query (ARQ) Systems, performance of ARQ systems.

Module V

5G, uses of 5G, underlying technologies that make up 5G, radio access network, core network, 5G working, comparison of 5G with previous generation mobile networks, applications of 5G, vision of 6G.

- 1. Communication Systems, A B Carlson, 5th edition, McGraw Hill, 2011.
- 2. Principles of Communication Systems, Herbert Taub, Donald Schilling & Gautam Saha, 4th edition, McGraw Hill, 2017.
- 3. Digital Communication, Nishanth Nazimudeen, 1st edition, Cengage, 2018.
- 4. Principles of Digital Communication, Das, Mullick, and Chatterjee, 1st edition, Wiley Eastern and Halstead Press, 1986.
- 5. Communication Systems, Simon Haykin, 4th edition, John Wiley & Sons, 2001.
- 6. Key 5G Physical Layer Technologies, Enabling Mobile and Fixed Wireless Access, Douglas H. Morais, 2nd Edition, 2021.

Semester II

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the theory of propagation of light in an optical fibre	Understand	4	
CO2	Solve wave equations and explain electromagnetic fields of guided modes	Apply	4	
CO3	Analyze the formation of modes in a planar optical wave guide	Analyze	6	4
CO4	Examine single mode and multimode optical fibers and classify optical fibers based on their refractive index profiles	Analyze	4	6
C05	Compare different types of pulse broadening mechanisms in optical fibers	Understand	4	
C06	Distinguish between the loss mechanisms in optical fibers and to compute various losses	Analyze	4	2
C07	Categorize different techniques to provide optical connections in fibers	Analyze	4	4
C08	Practice the use of various standard optical fiber connectors and couplers	Apply	4	6
C09	Compare the sensitivity of various fibre Bragg gratings	Understand	5	4
CO10	Analyze the functioning of optical fiber sensors that use amplitude, phase, frequency and polarization type modulation schemes	Analyze	6	4
	Total Number of Hours		45	30

24-441-0201 Fibre Optics and Applications

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	1	1			1	
CO2	3	1	1			1	
CO3	3	2	1			1	
C04	3	1	1			1	
C05	3	1	1			1	
C06	3	3	1			1	
C07	3	3	1			1	
CO8	3	3	1			1	
CO9	3	3	1			1	
CO10	3	1	1			1	

3-High; 2-Medium; 1-Low

Module I

Optical wave guides: Historical development, ray theory of propagation, electromagnetic theory of wave propagation, characteristics of planar wave guides, TE and TM modes in planar wave guide, number of guided modes, optical fibre, types of fibers, step index and graded index fibers, characteristics of optical fibre, mode analysis: weakly guiding fibre approximation, LP modes, single mode fibre, cut- off wave lengths, spot size, mode coupling, elements of coupled mode analysis.

Module II

Transmission characteristics of optical fibers: Attenuation, absorption losses, fiber bend losses, linear scattering losses, nonlinear scattering losses, stimulated Raman and stimulated Brillouin scattering, Optical fiber amplifiers: Erbium doped fiber amplifier, amplifier modelling, Dispersion: Phase and group velocities, material dispersion, intra-modal dispersion and wave guide dispersion, overall fibre dispersion, dispersion management, dual mode fibers, dispersion modified fibers, specialty optical fibers, photonic crystal fibers, guiding by effective index, guiding by photonic bandgap, polarization maintaining fibers, solitons.

Module III

Optical fiber measurements: Attenuation measurements, dispersion measurements (time domain and frequency domain), measurements of NA, fiber diameter and refractive index profile, interferometric method, near field scanning method, measurements of cut-off wavelength, mode filed diameter, insertion loss. Field measurements: Optical time domain reflectometer (OTDR), Testing of optical fiber systems, effects of changing pulse width.

Module IV

Optical fibers and cables: Fabrication of optical fiber, fiber material requirements, Fiber drawing: Liquid phase methods, vapour phase deposition techniques, cable design, optical fiber connection: joints and couplers, fiber splices, fusion splices, mechanical splices, fiber connectors, expanded beam connectors, single mode fiber optic components, fiber couplers, wavelength division multiplexers, fiber polarisation controllers, source to fibre and fibre to fibre coupling, coupling losses, i/p, o/p couplers, cabling standards, system components, cabling tools.

Module V

Periodic interaction in wave guides, coupled mode equations, power coupling between modes, directional couplers, grating input- output couplers, contra-directional coupling, fibre Bragg grating, long- period fiber Bragg Grating, fabrication of fibre gratings. Optical fibre sensors: Intensity modulation sensors, phase modulation sensors, temperature, pressure, chemical and rotation sensors, fibre optic gyroscopes, evanescent wave sensors, polymer optical fiber-based sensing, Integrated optical devices: Couplers, OSA, Lenses.

- 1. Title Optical fiber communication, G. Keiser, McGraw Hill Education, 5th Edition, 2017 (text).
- 2. Understanding fiber optics, J Hecht, Laser Light Press, 5th Edition, 2016.
- 3. Introduction to fiber optics, Ajoy Ghatak and K. Thyagarajan, Cambridge University Press, 2017 (text).
- 4. Optical Fiber Communications: Principles and Practice, 3rd edition, John M. Senior, Pearson Education India, 2010.
- 5. Fundamentals of Fibre Optics in Telecommunication and Sensor Systems, B.P. Pal., New Age Publishers, 1992.
- 6. Fibre Optic Sensors Principles and Applications, B. D. Gupta, New India Publishing, 2006.
- 7. Fibre Optic Communication Systems, 3rd Edition G.P. Agrawal, John Wiley & Sons, 2002.
- 8. Integrated Optics, R. G. Hunsperger. Springer Verlag, 1998.

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the properties and advantages of optical guided communication	Understand	5	
CO2	Identify the various components of the optical fiber communication system. and explain the importance of integrated optical systems.	Understand	5	
CO3	Describe the working of LEDs and laser diodes.	Understand	7	
CO4	Explain various external modulation methods for coherent communication.	Understand	8	
CO5	Describe the operation of optical receivers including the types of preamplifiers.	Understand	7	
C06	Design and prepare optical power loss/gain budget with various line coding.	Apply	8	
C07	Distinguish semiconductor optical amplifier and erbium doped fiber amplifier.	Understand	5	
C08	Calculate gain and power conversion efficiency of an optical amplifier.	Apply	5	
CO9	Describe various optical network topologies and its performance.	Understand	5	
CO10	Explain the concepts such as RF over fiber, solitons and optical CDMA.	Understand	5	
	Total Number of Hours		60	0

24-441-0202 Optical Communication Technology

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	1	1			1	
CO2	3	1	1			1	
CO3	3	3	1			1	
CO4	3	1	1			1	
CO5	3	1	1			1	
CO6	3	3	2			1	
C07	3	3	1			1	
C08	3	3	2			1	
CO9	3	1	1			1	
CO10	3	1	1			1	

3-High; 2-Medium; 1-Low

Module I

Unguided optical communication system, transmission parameters, beam divergence, atmospheric attenuation, guided wave communication, merits of optical fiber communication systems, basic network information rates, time evolution of fiber optic systems, elements of

optical fiber transmission link/repeaters, integrated optics, active and passive components, optomechanical switches, all optical switches.

Module II

Optical Transmitter: LED - Modulation bandwidth, Emission Pattern, Need for Laser Diodes, Single Longitudinal Mode Lasers, Photon Lifetime, Semiconductor Laser Rate equation, steady state solution, LI characteristics, Output power from laser, Modulation response of LD,Chirp, Noise in Lasers- Relative Intensity Noise, Phase noise, Effect of noise on different modulation schemes, External Modulation- generation of OOK, BPSK, QPSK and 16QAM

Module III

Optical receiver operation, Error sources, Receiver configuration, Fourier transform representation, Digital receiver performance calculations, Preamplifier types, High impedance bipolar transistor amplifiers, trans-impedance amplifier, Analog receivers.

Link power budget, Rise time budget, Link line coding, NRZ codes, RZ codes, Block codes, Coherent Systems, Balanced Detection, Phase and Polarisation Diverse Coherent Detection, Digital Signal Processing for compensation of phase noise, frequency offset, chromatic dispersion, polarisation mode dispersion. Homodyne and Hetrodyne detection. Multiplexing schemes, TDM, WDM concepts and components, Operational principles of WDM, Passive components, 2 x 2 fiber coupler, Fiber grating filters, Tunable filters, System consideration and tunable filter types

Module IV

Optical amplifiers, general applications and amplifier types, semiconductor optical amplifiers, External pumping, Amplifier gain, Erbium doped fiber amplifiers, Amplification mechanism, EDFA architecture, EDFA power conversion efficiency and gain, Amplifier noise.

Module V

Optical networks, Network topologies, Performance of passive linear busses, Performance of star architectures, SONET/SDH, Transmission formats and speeds, Optical interfaces, SONET/SDH rings, SONET/SDH networks, Nonlinear effects on network performance, Solitons, Optical CDMA, Ultrahigh capacity networks, RF over fiber.

- 1. Optical Fibre Communication G Keiser, McGraw Hill(4th Ed), 2006 (Text)
- 2. OpticalFibre Communications JM Senior(Prentice Hall India 1994) (Text)
- 3. Introduction to Fiber-Optic Communications, Rongquing Hui, Academic Press (2019) (Text)
- 4. Fibre Optic Communication C Agarwal (Wheeler, 1993)
- 5. OpticalFibre Communication Systems- J Gowar(Prentice Hall, 1995).
- 6. Fibre Optic Communication -J Palais (Prentice Hall International 1988).
- 7. Optical networks: A practical perspective Kumar N Sivarajan and Rajeev Ramaswami, MarcourtAsia, 2010
- 8. WDM systems and networks: Modeling, simulation, design and engineering, N. Antoniades, G. Ellinas, and I. Roudas, Springer, 2012 (ISBN 978-1-4614-1092-8).

24-441-0206 Advanced Laser Technology

СО	CO Statement	CL	Class Hrs	Lab Hrs
CO1	Explain different mechanisms for ultra- short pulse generation	Understand	6	
CO2	Describe techniques for pulse shaping	Understand	6	
CO3	Describe the cavity modes	Understand	8	
CO4	Describe ABCD matrix analysis	Evaluate	8	
CO5	Explain various pulse compression techniques	Understand	6	
CO6	Describe measurement techniques for compressed pulses	Evaluate	6	
C07	Describe propagation of attosecond light pulses	Understand	6	
C08	explain the stabilization of carrier-envelope phase	Understand	6	
CO9	identify different models for attosecond pulse generation and detection	Analyze	6	
CO10	review safety requirements of ultra high intensity lasers	Understand	2	
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1		1	1	
CO2	3	3	1		1	1	
CO3	3	3	1		1	1	
CO4	3	3	1		1	1	
C05	3	3	1		1	1	
C06	3	3	1		1	1	
C07	3	3	1		1	1	
C08	3	3	1		1	1	
CO9	3	3	1		1	1	
CO10	3	3	1		1	1	

3-High; 2-Medium; 1-Low

Module I

Characteristics of femtosecond light pulses-pulse propagation-interaction with linear optical elements- generation of phase modulation- beam propagation- Femtosecond optics - dispersion of interferometric structures, focusing element, elements with angular dispersion-GVD-pulse shaping with resonant particles-nonlinear, nonresonant optical processes

Module II

Superposition of cavity modes- cavity modes and modes of a mode-locked laser- basic elements and operations of a fs laser- circulating pulse model - evolution of the pulse energy - pulse shaping in intracavity elements - cavity modes and ABCD matrix analysis - cavity with a Kerr Lens - Synchronous mode-locking, hybrid mode-locking - mode-locking based on nonresonant nonlinearity - Ti-Sapphire laser.

Module III

Amplified spontaneous emission - Nonlinear refractive index effects - Chirped pulse amplification - amplifier design -Optical parametric chirped pulse amplification - pulse compression - pulse shaping through spectral filtering - Intensity autocorrelation - nonlinear optical processes for measuring femtosecond pulse correlations - single shot measurements - Frequency resolved optical gating(FROG) - Spectral Phase interferometry for Direct Field Reconstruction(SPIDER).

Module IV

Mathematical description of attosecond optical pulses - propagation of attosecond pulse in linear dispersive media - Carrier envelope phase and dispersion - Group velocity dispersion, Group Delay dispersion, pulse broadening and compression - stabilization of the carrier-envelope phase of oscillators.

Module V

Attosecond pulse generation - Three step model - Long and Short trajectories - chirp of attosecond pulses - Tunneling ionization and multiphoton ionization - isolated attosecond pulse generation - Complete Reconstruction of attosecond bursts (CRAB) - measurement of temporal a single harmonic pulse - side bands - reconstruction of attosecond beating by interference of two-photon transition (RABBIT)

- 1. Ultrashort Laser Pulse Phenomena, Jean-Claude Diels and Wolfgang Rudolph, Second Edition, Academic Press, 2006 (Text)
- 2. Fundamentals of Attosecond Optics, Zenghu Chang, CRC Press, 2011 (Text)
- 3. Principles of Lasers, O Svelto, Fifth Edition, Springer, 2010
- 4. Lasers, Anthony E Siegman, University Science Books, 1986
- 5. Lasers The Power and Precision of Light, Jean-Claude Diels and Ladan Arissian, WILEY-VCH Verlag GmbH & Co, 2011

CO	CO Statement	CL	Class Hrs	Lab Hrs	PSO
C01	Utilize the concepts of nonlinear susceptibilities to predict frequencies generated by nonlinear optical processes.	Apply	7	0	1,2
CO2	Explain Miller's Rule, Symmetries of nonlinear susceptibilities and index contraction method	Understand	5	0	1,2
CO3	Analyze the theory of second order nonlinear effects such as Second Harmonic Generation, Sum Frequency Generation, Difference Frequency Generation, Optical Parametric Oscillations and Frequency Up/Down Conversion	Analyze	6	0	1,2
CO4	Understand the principles of Phase-matching, index matching and Quasi Phase Matching conditions.	Understand	6	0	1,2
C05	Explain the concepts of Third order nonlinearity- third order susceptibility tensor, Degenerate four wave mixing	Understand	7	0	1,2
C06	Explain the theory behind Optical Phase Conjugation and its applications in image processing and distortion correction.	Apply	5	0	1,2
C07	Explain the theory of nonlinear scattering mechanisms.	Understand	7	0	1,2
C08	Understand the theories related to Self Focusing , Self Induced Transparency, and the propagation of optical solitons.	Understand	5	0	1,2
C09	Explain the theory of nonlinear absorption processes - Saturable Absorption, Reverse Saturable Absorption, Two photon Absorption and its applications.	Understand	7	0	1,2
C010	Analyze the theory of nonlinear Fabry-Perot etalon, optical bistability and its applications.	Analyze	5	0	1,2
	Total Number of Hours		60	0	

24-441-0109/24-441-0207 Nonlinear Optics

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1			1	
CO2	3	3	1			1	
CO3	3	3	1			1	
CO4	3	3	1			1	
C05	3	3	1			1	
C06	3	3	1			1	
C07	3	3	1			1	
C08	3	3	1			1	
CO9	3	3	1			1	
CO10	3	3	1			1	

3-High; 2-Medium; 1-Low

Module 1

Historical Overview of Nonlinear Optics, Non-linear polarization, physical origin of non-linear optical coefficients- Classical Anharmonic Oscillator Model, Miller's Rule, susceptibility tensors, Symmetries of nonlinear susceptibilities, Index contraction, d-matrix., Parametric and Non-parametric processes.

Module 2

Propagation of EMW through nonlinear media, Coupled amplitude equations for second-order processes $\chi^{(2)}$, Phase Matching conditions, Quasi Phase Matching (QPM), second harmonic generation, sum and difference frequency generation, optical parametric processes (OPA and OPO), Frequency Up/Down conversion.

Module 3

Third order nonlinearity: Third order susceptibility tensor, Degenerate four wave mixing, Phase conjugate optics- properties of phase conjugate light, Generation of phase conjugate light, FWM in optical Kerr media, coupled mode formulation, Resonators with OPC mirror, Imaging through distorting medium.

Module 4

Nonlinear scattering processes - Stimulated Raman Scattering (SRS)-Quantum mechanical description of Raman scattering, Raman cross section and gain, SRS described by non-linear polarization, Anti Stokes Raman Scattering, Coherent Antistokes Raman Scattering (CARS). Self action effects- intensity dependent refractive index, Self-focusing effect, Self-induced transparency- pulse area theorem.

Module 5

Nonlinear absorption- Two photon Absorption (TPA), Multiphoton absorption, Applications of nonlinear absorption, saturable and reverse saturable absorbers, Z-scan theory of closed aperture and open aperture scan. Nonlinear Fabry- Perot etalon (NLF), NLF as a computing element, Optical Bistability, Optical logic gates.

- 1. Hand book of Nonlinear optics-Richard L Sutherland, (Second Edition), Marcel Dekker Inc,(2003) (Text).
- 2. Nonlinear optics- Robert W Boyd, Academic Press, Elsevier, Inc (Third Edition) (2008), (Text).
- 3. Photonics, Elemental and Devices- V V Rampal, Wheeler Publishing (1992).
- 4. Lasers and Nonlinear optics- B B Laud, Wiley Eastern 3rd Edition, (2004).
- 6. Optical Electronics in Modern Communications (5th Edition), A Yariv, Oxford University Press, (1997).
- 7. Nonlinear Optics- Y R Shen, John Wiley Sons (1991).
- 8. Nonlinear Fibre Optics- Govind P Agarwal, Academic Press, 4th Edition(2007).
- 9. Quantum Electronics- A Yariv, John Wiley Sons (1975).
- 10. Fundamentals of Photonics, B E A Salch, M C Teich, John Wiley Sons, 2nd edition (2007).
- 11. Physics of nonlinear optics-Guang S He and Song H Lie, world scientific , London (1999).
- 12. Fundamentals of Nonlinear Optics, P.E.Powers, CRC Press(2011).

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the basic theory and science of interaction of light with cells and tissues	Understand	8	
CO2	Understand different light delivery systems	Understand	6	
CO3	Understand fundamentals of optical imaging	Analyze	6	
CO4	Understand different optical imaging techniques	Understand	8	
C05	Analyze different optical biosensors	Analyze	6	
C06	Understand flow cytometry	Understand	5	
C07	Understand photodynamic therapy	Understand	4	
C08	Understand different tissue engineering techniques using light	Understand	6	
CO9	Understand optical tweezers and analyze its applications	Analyze	5	
CO10	Understand use of materials like quantum dots for bioimaging	Understand	6	
	Total Numbers of Hours		60	0

24-441-0208: Nano-Biophotonics

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1		1	1	
CO2	3	3	1		1	1	
CO3	3	3	1		1	1	
CO4	3	3	1		1	1	
CO5	3	3	1		1	1	
C06	3	3	1		1	1	
C07	3	3	1		1	1	
C08	3	3	1		1	1	
CO9	3	3	1		1	1	
CO10	3	3	1		1	1	

3-High; 2-Medium; 1-Low

Module I

Photobiology; interaction of light with cells with cells and tissues, Photo-process in Bio polymers, human eve and vision, Photosynthesis; Photo-excitation - free space propagation, optical fibre delivery system, articulated arm delivery, hollow tube wave-guides. Optical coherence Tomogaphy, Spectral and time-resolved imaging. Fluorescence, resonance energy transfer imaging, nonlinear optical imaging.

Module II

Bio-imaging: Transmission microscopy, Kohler illumination, microscopy based on phase contrast, darkfield and differential interference contrast microscopy, Florescence, confocalandmultiphoton microscopy.

Applications of bio-imaging; Bio-imaging probes and fluoropores, imaging of microbes, cellular imaging and tissue imaging

Module III

Optical Biosensors: Florescence and energy transfer sensing, molecular beacons and optical geometries of bio-sensing, Biosensors based on fibre optics, planer waveguides, evanescentwaves, interferometric and surface plasmon resonance.

Flow Cytometry: basis, fluro chromes for flow cytometry, DNAanalysis.

Module IV

Laser activated therapy; Photodynamic therapy, photo-sensitizers for photodynamic therapy, applications of photodynamic therapy, two photon photodynamic therapy. Tissue engineeringusing light; contouring and restructuring of tissues using laser, laser tissue regeneration, femtosecond laser surgery.

Module V

Laser tweezers and laser scissors: design of Laser tweezers and laser scissors, optical trapping using non Guassian optical beam, manipulation of single DNA molecules, molecular motors, laser for Genomics and Proteomics, semi conductor Quantum dots for bio imaging, Metallicnano-particles and nano-rods for bio-sensing, Photonics and biomaterials: bacteria as bio- synthezers for photonics polymers.

- 1. Introduction to bio-photonics- P.N. Prasad Wiley Interscience (2003)
- 2. Biomedical Photonics A handbook editor Tuan.Vo Dinh (CRC Press) (2002)

Semester III

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the Advantages of Lasers in Spectroscopy	Understand	5	
CO2	Compare various experimental techniques in high sensitivity laser spectroscopic techniques.	Understand	7	
CO3	Compare techniques such as photoacoustic and optothermal spectroscopies	Understand	7	
CO4	Describe the advantages of using lasers in fluorescence spectroscopy.	Understand	5	
C05	Explain the experimental techniques in nonlinear optical spectroscopic techniques.	Understand	6	
C06	Illustrate the techniques of nonlinear and laser Raman spectroscopy.	Understand	6	
C07	Comprehend the concepts of optical pumping spectroscopy.	Understand	6	
C08	Describe the mechanism of double resonance spectroscopy.	Understand	6	
C09	Summarize the concept of time-resolved spectroscopy	Understand	7	
CO10	Explain LIBS and its applications.	Understand	5	
	Total Number of Hours		60	0

24-441-0304 Laser Spectroscopy

CO-PSO Mapping

upping							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1		1	1	
CO2	3	3	1		1	1	
CO3	3	3	1		1	1	
CO4	3	3	1		1	1	
CO5	3	3	1		1	1	
CO6	3	3	1		1	1	
C07	3	3	1		1	1	
C08	3	3	1		1	1	
CO9	3	3	1		1	1	
CO10	3	3	1		1	1	
0.111.1	0.14.14						

3-High; 2-Medium; 1-Low

Module I

Advantages of lasers in spectroscopy, High-Sensitivity Methods of Absorption Spectroscopy, Frequency Modulation, Intra-cavity Laser Absorption Spectroscopy, Cavity Ring-Down Spectroscopy, Fluorescence Excitation Spectroscopy.

Module II

Photoacoustic Spectroscopy, Optothermal Spectroscopy, Ionization Spectroscopy – photoionization, collision-induced and field ionization, Sensitivity of ionization Spectroscopy Thermal lens spectroscopy, dual and single beam techniques.

Laser induced fluorescence spectroscopy, experimental aspects of LIF.

Module III

Nonlinear spectroscopy, saturation spectroscopy, experimental schemes, Multiphoton spectroscopy, two-photon absorption spectroscopy, Doppler-Free Multiphoton Spectroscopy.

Laser Raman Spectroscopy, Experimental Techniques of Linear Laser Raman Spectroscopy, Nonlinear Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy, Resonant CARS.

Module IV

Optical Pumping and Double-Resonance Techniques, Optical Pumping,Optical–RF Double-Resonance Technique, Optical–Microwave Double Resonance, Optical–Optical Double Resonance.

Module V

Time resolved laser spectroscopy, Measurement of Ultrashort Pulses, Streak Camera,Optical Correlator for Measuring Ultrashort Pulses, FROG Technique, SPIDER Technique, Lifetime Measurement with Lasers, Spectroscopy in the Pico-to-Attosecond Range, Applications.

Laser Induced Breakdown Spectroscopy, factors affecting laser ablation and laser induced plasma formation, Double pulse LIBS, Femtosecond LIBS, Resonant LIBS, Applications.

- 1. Laser Spectroscopy Vol. 2 Experimental Techniques, Wolfgang Demtröder, Springer Berlin Heidelberg (2008)(Text)
- 2. Anal. Chem. 2013, 85, 2, 640-669
- 3. Handbook of laser induced breakdown spectroscopy, David A. Cremers, Leon J. Radziemski, Wiley (2013)(Text)
- 4. Laser Spectroscopy: Vol 1 Basic Principles, Wolfgang Demtröder, Springer (2008)(Text)
- 5. Thermal Lens spectroscopy, Mladen Franko, Chieu D. Tran, Wiley (2010)
- 6. Photoacoustics and Photoacoustic Spectroscopy, Allan Rosencwaig, John Wiley & Sons Inc; Volume 57 ed. edition (1980)

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Recall Maxwell's equations, constitutive relations, and boundary conditions.	Understand	6	0
CO2	Describe the dielectric function of materials using Drude model, and understand electromagnetic radiation.	Understand	6	0
CO3	Understand analytical methods for solving Laplace's equation and numerical techniques for solving differential equations.	Understand	6	0
CO4	Describe numerical methods for solving differential equations related to photonic systems.	Understand	6	0
CO5	Understand cavity modes and propagation of waves in periodic media.	Understand	6	0
C06	Analyze the structure of periodic media in order to predict the wave propagation in it.	Analyse	6	0
C07	Understand numerical methods for solving differential equations.	Understand	6	0
C08	Apply numerical methods for solving problems in photonics.	Apply	6	0
C09	Understand the electromagnetic response of antenna elements and nanophotonic structures.	Understand	6	0
CO10	Utilize numerical methods for calculating the response of simple optical systems.	Apply	6	0
	Total Number of Hours	•	60	0

24-441-0305 Computational Photonics

CO-PSO Mapping

					-		
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3				2	1	
CO2	3				2	1	
CO3	3				2	1	
CO4	3				2	1	
CO5	3				2	1	
C06	3				2	1	
C07	3				2	1	
C08	3				2	1	
CO9	3				2	1	
CO10	3				2	1	

3-High; 2-Medium; 1-Low

Module I

Maxwell equation, constitutive relations, boundary conditions, electromagnetic waves, waves in vacuum and in absorbing media. Dielectric function, dielectric function of metals and Drude model. Radiation, Poynting vector and power.

Module II

Computational methods in Photonics. Analytical methods. Laplace equation and its solutions. Solutions to Laplace equation in rectangular and spherical coordinates. Examples of solving electrostatic systems using Laplace equation. Mie Theory.

Module III

Cavities and cavity modes. Waveguides and modes, basics of waveguide theory. Wave propagation in layered media, Transfer matrix method. Photonic crystal structures and band-gap engineering.

Module IV

Numerical techniques for solving differential Equations. Euler's and Runge Kutta methods. Discretization methods, Integration methods, Time-stepping methods.. Finite difference method. Solving Laplace equation using finite difference method.

Module V

Electromagnetic response of nanoscale systems. Antenna effects in nanoscale systems: nanoantennas. Plasmonic and dielectric antennas. Computational modelling of plasmonic structures. Finite difference and finite element methods in photonics. Boundary conditions, discretization, meshing, convergence testing.

- 1. Introduction to Electrodynamics, David J. Griffiths, Prentice Hall of India.
- 2. Classical Electrodynamics, J. D. Jackson, 3rd Ed. Wiley, 1998 (Text).
- 3. Antenna Theory: Analysis and Design, Constantine A. Balanis, 4th Ed. Wiley 2016 (Text).
- 4. Principles of Nano Optics, Bert Hecht and Lukas Novotny, Cambridge University Press, 2012 (Text).
- 5. Introductory Methods of Numerical Analysis, 5th Ed., S. S. Sastry, Prentice Hall of India, 2012 (Text).
- 6. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Allen Taflove and Susan C. Hagness, Artech House, 1995 (Text).
- 7. Nanophotonics, Paras N. Prasad, Wiley-Interscience, 2004 (Text).
- 8. The Mathematical Theory of Finite Element Method, Susanne C. Brenner and L. Ridgway Scott, Springer-Verlag New York Inc., 2007 (Text).
- 9. Introductory Methods of Numerical Analysis, 5th Edition, S. S. Sastry, Prentice Hall of India, Delhi, 2022 (Text).

MSc Photonics Revised Scheme (2023 Admission)

	Numb	er of cours	ses offere	d by the dep	artment				
Semester	Major 4 credits	Minor 4 credits	MDC 4 credits	AEC 2/3 credits	SEC 3 credits	VAC 2 credits	Total credits		
I	1	1	1	1 (3 cr)	1	2	22		
II	1	1	1	1 (3 cr)	1	2	22		
III	2+1 (lab 3cr)	1	1	1 (2 cr)			21		
IV	4	1			1		23		
V	4 +1 (lab 3cr)	1					23		
VI	4+1 (lab 3cr)	1					23		
			I	Internship**	۲ ۲	I	2		
Total credits/co urses	73	24	12	8	9	8	136		
	**Not counted as a course Exit with BSc in Photonics (Total credits = 136)								
VII	4	1					20		

MSc Photonics Revised Scheme (2023 Admission)

	1 Courses +						
	seminar/open ended labs/online (2 credits)						
	+ Project (12 credits)						
VIII	Or	1					22
	3 Major Courses + Mini project (4 credits) +						
	seminar/open ended labs/online course (2 credits)						
Total credits/co urses	Hon. (Research): 107	32	12	8	9	8	178
	Hon. : 107						
Exit with BS	Sc (Honours with R	esearch) in	Photonics	(Total cred	its = 178)		
Exit with BS	Sc (Honours) in Pho	otonics (To	tal credits	= 178)			
	5 Courses						
IX	+ online (2 credit**)						20-24
	Major project						
Х	+ online (2 credit**)						20-24
Total credits	151	32	12	8	9	8	222
course wor	of taking two online th 4 credits in the n ill be 24, and in the	inth/tenth	semester.	In such case			
Exit with M	Sc (Five-Year Integ	rated) in P	hotonics (1	Րotal credits	= 222)		
ADC: Multi-I	Disciplinary Course	S					

MDC: Multi-Disciplinary Courses AEC: Ability Enhancement Courses SEC: Skill enhancement Courses VAC: Value Added Courses

Semester III

Course Code	Course Name	Туре	Credits	redits Hours/ week		Marks distribution				
course coue	course nume			L-T-P	CA	ESE	Total			
23-351-0301	Python Programming	Core	4	3-0-2	50	50	100			
23-351-0302	Electricity and Magnetism	Core	4	4-0-0	50	50	100			
23-351-0303	Classical Mechanics	Core	4	4-0-0	50	50	100			
23-351-0304	Mathematics III	MDC	4	3-1-0	50	50	100			
23-351-0305	Instrumentation Workshop	AEC	2	1-1-0	50		50			
23-351-0306	Lab	Core	3	0-0-6	100		100			
Semester Credits		21 (Cumulative credits: 65)								

Semester IV

Course Code	Course Name	Туре	Credits	Hours/ week	Marks distribution					
course code				L-T-P	CA	ESE	Total			
23-351-0401	Thermal and Statistical Physics	Core	4	4-0-0	50	50	100			
23-351-0402	Mathematical physics	Core	4	4-0-0	50	50	100			
23-351-0403	Electronics	Core	4	4-0-0	50	50	100			
23-351-0404	Quantum mechanics I	Core	4	4-0-0	50	50	100			
23-351-0405	MOOC*	Elective	4	4-0-0		100	100			
23-351-0406	General Photonics Lab	SEC	3	0-0-6	100		100			
Semester Credits		23 (Cumulative credits: 88)								

* 23-351-0405 MOOC (1 course of 4 credits/2courses of 2 credits)

Semester V

Course Code	Course Name	Туре	Credits	Hours/ week	Marks distribution			
course coue	Course Name			L-T-P	СА	ESE	Total	
23-351-0501	Quantum Mechanics II	Core	4	4-0-0	50	50	100	
23-351-0502	Electrodynamics	Core	4	4-0-0	50	50	100	
23-351-0503	Spectroscopy	Core	4	4-0-0	50	50	100	
23-351-0504	Biophotonics	Core	4	4-0-0	50	50	100	
23-351-0505	Elective I: MOOC*	Elective	4	4-0-0	0	100	100	
23-351-0506	General Physics Lab	Core	3	0-0-6	100		100	
Semester Credits		23 (Cumulative cre	edits: 111)		•	•		

* 23-351-0505 MOOC (1 course of 4 credits/2courses of 2 credits)

Semester VI

Course Code	Course Name	Туре	Credits	Hours/ week	Marks distribution					
course coue				L-T-P	CA	ESE	Total			
23-351-0601	Laser Physics	Core	4	4-0-0	50	50	100			
23-351-0602	Fiber Optics	Core	4	4-0-0	50	50	100			
23-351-0603	Computational Methods in Optics and Photonics	Core	4	4-0-0	50	50	100			
23-351-0604	Optical Instrumentation	Core	4	3-0-2	50	50	100			
23-351-060X	Elective II	Elective	4	3-0-2	50	50	100			
23-351-0605	Computational Lab	Core	3	0-0-6	100		100			
Semester Credits		23 (Cumulative credits: 134)								

List of Electives II

23-351-0606 Optical Sensor Technology

23-351-0607 Photonic Crystals and Optical Metamaterials

23-351-0608 Fourier Optics & Optical Signal Processing

Internship

Students have to complete an internship of 2 credits (60 Hours of work) before the beginning of Semester VII. **Cumulative Credits: 136**

Exit with 3-year UG Degree OR continue to the $4^{\rm th}$ year.

Semester VII

Course Code	Course Name	Туре	Credits	Hours/ week	Marks distribution					
course coue				L-T-P-S	СА	ESE	Total			
23-351-0701	Optoelectronics	Core	4	3-0-2	50	50	100			
23-351-0702	Condensed Matter Physics	Core	4	4-0-0	50	50	100			
23-351-0703	Non-linear optics	Core	4	4-0-0	50	50	100			
23-351-0704	Photonics Lab 1 and Seminar	Core	4	0-0-6-1	100 +50		100+ 50			
23-351-070X	Elective III	Elective	4	4-0-0	50	50	100			
Semester Credits		20 (Cumulative credits: 156)								

S: Seminar

List of Electives III

23-351-0706 Nanophotonics

23-351-0707 Laser spectroscopy

23-351-0708 Quantum Optics & Quantum Computing

23-351-0709 Advanced Electromagnetic Theory

Semester VIII

For Honours with Research

Course Code	Course Name	Туре	Credits	Hours/ week	Marks distribution			
course coue				L-T-P-S	CA	ESE	Total	
23-351-0801	Elective IV: MOOC II	Elective	4			100	100	
23-351-0802	Elective V: MOOC III	Elective	4			100	100	
23-351-0803	Project	Core	12	0-0-24	300		300	
23-351-0804	Seminar	Core	2	0-0-0-2	100		100	
Semester Credits		22 (Cumulative cre	edits: 178)		•			

For Honours

Course Code	Course Name	Turne	Credits	Hours/ week	Mark	s distri	ibution	
course coue	Course Name	Туре		L-T-P-S	CA	ESE	Total	
23-351-0805	Mini Project	Core	4	0-0-8	100		100	
23-351-0806	Photonics lab 1	Core	4	0-0-8	100		100	
23-351-0801	Elective IV: MOOC II	Elective	4	4-0-0		100	100	
23-351-0802	Elective V: MOOC III	Elective	4	4-0-0		100	100	
23-351-0804	Seminar	Core	2	0-0-0-2	100		100	
23-351-080X	Elective VI	Elective	4	3-0-2	50	50	100	
Semester Credits	22 (Cumulative credits: 178)							

List of Electives IV & V

MOOC courses on

Optical Communication or Solar Cells

If no MOOC courses are available, these two courses will be offered by the department in online mode.

List of Electives VI

23-351-0807 Optomechanical Engineering

23-351-0808 Laser Systems and Laser Applications

Exit with 4-year UG Degree OR continue to the 5th year.

Semester IX

Course Code	Course Name	Туре	Credits	Hours/ week	Mark	s distr	ibution
course coue	course mane	Type		L-T-P	CA	ESE	Total
23-351-0901	Industrial Photonics	Core	4	4-0-0	50	50	100
23-351-0902	Photonics lab 2	Core	4	0-0-8	100		100
23-351-0903	Elective VII: MOOC IV**	Elective	2			100	100
23-351-090X	Elective VIII	Elective	4	4-0-0	50	50	100
23-351-090X	Elective IX	Elective	4	4-0-0	50	50	100
23-351-090X	Elective X	Elective	4	4-0-0	50	50	100
Semester Credits for Photonics Major		22 (Cumulative cre	edits: 200)	1	1	1	I

List of Electives VIII-X

23-351-0904 Quantum Communications

23-351-0905 Ultrafast Photonics

23-351-0906 Plasma Physics

23-351-0907 Microscopic Techniques

Semester X

Course Code	C	There a	Credits	Hours/ week	Mark	s distr	ibution
course coue	Course Name	Туре		L-T-P	CA	ESE	Total
23-351-1001	Major Project	Core	20	0-0-40	600		600
23-351-1002	Elective XI: MOOC V**	Elective	2			100	100
Semester Credits for Photonics Major	22 (Major pathway: 22) Cumulative credits: 222						

**Instead of taking the online course worth 2 credits, a student has the option to select one online course worth 4 credits in the ninth/tenth semester. In such cases, the credits earned in that semester will total 24. Consequently, they won't need to enroll in the MOOC course in the other semester, and the maximum credits for that semester will be 20.

Detailed Syllabus

23-351-0301 Python Programming

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Demonstrate proficiency in Python programming fundamentals, including syntax, control structures	Understand	8	0
CO2	Analyze different data structures and develop basic software solutions	Analyze	7	0
CO3	Apply Object-Oriented Programming principles to design and implement modular software solutions	Apply	7	0
C04	Understand code reusability and maintainability.	Understand	6	0
CO5	Develop skills in GUI programming using open-source tools to create interactive graphical applications with user-friendly interfaces.	Apply	6	0
C06	Understand web development concepts and networking fundamentals, enabling them to build basic web applications and network applications using open- source tools and socket programming.	Understand	7	0
C07	Apply data processing and analysis techniques using Python libraries such as NumPy, Pandas	Apply	6	0
C08	Apply Matplotlib and Seaborn to manipulate and visualize data effectively.	Apply	7	0
C09	Understand building machine learning pipeline for well- known models.	Understand	6	
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	1	1		2		
CO2	3	1	1		2		
CO3	3	1	1		2		
CO4	3	1	1		2		
C05	3	1	1		2		
C06	3	1	1		2		
C07	3	1	1		2		
C08	3	1	1		2		
CO9	3	1	1		2		

3-High; 2-Medium; 1-Low

Module I: Foundations of Python Programming

Introduction to Python and its Applications - Setting up Python Environment and Basic Syntax Control Structures, Functions, and Recursion - Data Structures: Lists, Tuples, Dictionaries, Sets-

Intermediate Python Features: File Handling, Exception Handling

Module II: Object-Oriented Programming (OOP) with Python

Principles of OOP and Class Creation - Inheritance, Polymorphism, and Encapsulation- Advanced OOP Concepts: Class Methods, Static Methods, Properties - Design Patterns in Python - GUI

Programming with open source tools.

Module III: Web Development and Networking

Introduction to Web Development with Flask - Creating Basic Web Applications – Database Management with Python and SQL - Networking and Socket Programming - Building Network Applications

Module IV: Data Processing and Analysis

Introduction to NumPy and Pandas- Data Manipulation and Analysis with Pandas – Data Visualization with Matplotlib and Seaborn - Introduction to Machine Learning with scikit-learn - Building Basic Machine Learning Models

- 1. Eric Matthes, Python Crash Course, 2nd Edition, No Starch Press, 2019
- 2. Mark Lutz, Learning Python, 5th Edition, O'Reilly Media, 2013
- 3. Dusty Phillips, Python 3 Object-Oriented Programming, 3rd Edition, Packt Publishing, 2018
- 4. Zetcode, Python GUI Programming with Tkinter, ZetCode, 2021
- 5. Miguel Grinberg, Flask Web Development, O'Reilly Media, 2018
- 6. Joel Grus, Data Science from Scratch: First Principles with Python, 2nd Edition, O'Reilly Media, 2019
- 7. Wes McKinney, Python for Data Analysis, 2nd Edition, O'Reilly Media, 2017
- 8. Jake VanderPlas, Python Data Science Handbook, O'Reilly Media, 2016
- 9. Luciano Ramalho, Fluent Python, 2nd Edition, O'Reilly Media, 2021
- 10. Brian Okken, Python Testing with pytest, Pragmatic Bookshelf, 2017

23-351-0302 Electricity and Magnetism

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Discuss the fundamental laws governing static electric fields and its implementation for topractical uses.	Understand	9	0
CO2	Explain the elementary concepts of magnetism, effect of magnetic field on moving charges, laws related to current induced magnetic fields and properties of various magnetic materials.	Understand	10	0
CO3	Explain the fundamentals of alternating currents.(Understand)	Understand	10	0
CO4	Employ the basic circuit laws and DC network theorems in the analysis of electrical circuits.	Apply	6	0
C05	Identify the behaviour of combination of circuit elements across single phase ACsupply.	Analyze	9	0
C06	Examine the phenomenon of series and parallel resonance in single phase AC circuits.	Analyze	10	0
C07	Describe operating principle of practical electrical devices.	Understand	6	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	2	1				
CO2	3	2	1				
CO3	3	2	1				
CO4	3	2	1				
C05	3	2	1				
C06	3	2	1				
C07	3	2	1				

3-High; 2-Medium; 1-Low

Module I

Quantization and conservation of charge, Millikan's oil drop experiment. Concept of electric flux-Gauss's law- Gauss's law in cylindrical, planar and spherical symmetry-applications. – Electric potential: equipotential surfaces, potential due to point charge, group of point charges and due to electric dipole. Capacitance: capacitors in series and parallel connections, storing energy in an electric field, Spherical capacitor, cylindrical capacitor, capacitor with dielectric. Electric current, current density, Ohm's law and its limitations, resistance and resistivity, comparison between EMF and potential difference.

Module II

Magnetic field (B), Magnetization vector (M); Magnetic Intensity (H);Magnetic Susceptibility and permeability; Relation between B, H, M, Hall Effect, Biot-Savart's Law and its simple applications: straight wire and circular loop; Current Loop as a Magnetic Dipole and its Dipole Moment, torque on a current loop, Ampere's Circuital Law and its application to Solenoid and Toroid, Electromagnetic induction: Faraday's Law of induction, Lenz's law, induced electric field, inductance, self and mutual induction, energy stored in a magnetic field, introduction to dia, para and ferro-magnetic materials, motion of charged particle in magnetic field, Lorentz force. Cyclotron and synchrotron.

Module III

Alternating currents- peak, rms and average values. AC through inductance, capacitance, resistance and their combinations. LC oscillations, damped oscillations, concept of phase difference between voltage and current, phasor diagram, concept of impedance, AC power, power factor. Kirchhoff's laws, source transformations, voltage and current division rule, practical and ideal voltage /current sources, Maxwell's mesh or loop method, Network theorems (for DC): Thevenin's, Norton's, super position and maximum power transfer theorems.

Module IV

Analysis of LC and RC circuits, series and parallel LCR circuits. Resonance, Acceptor and Rejecter circuits, Q-factor, relation of Q-factor to band width. Transformer- theory and construction. EMF equation, circuit parameters and equivalent circuit, distinction between ideal and practical transformer, Losses in transformer. Choke coil, Fuses, circuit breakers, relays, AC and DC generators.

- 1. Fundamentals of Electricity and Magnetism -9th edition, D. N. Vasudeva, S. Chand and company (2002) (Text)
- 2. Network theory and filter design Aatre, New Age International Publication 2nd edition (2003) (Text)
- 3. Brijlal & Subramaniam, Electricity and Magnetism-6 Th edition, Ratna Prakashan Mandir, Educational & University Publication, Barya ganj, New Delhi(2006).
- 4. Basic Electrical Engineering volume 18 Th edition, Thereja, S. Chand limited (2005).
- 5. K. K. Tewari, Electricity & Magnetism with electronics -7 th edition, S.Chand& Co. Pvt. Ltd., Ram Nagar, New Delhi(2007).
- 6. Electricity and Magnetism- R. Murugesan, S. Chand and Company, 4th Edition (2001)
- 7. Electricity and Magnetism Berkeley Physics Course Vol.2, EdwardPurcell, 2 nd Revised Edition, NewYork, Mc Graw Hill Science 2017

23-351-0303 Classical Mechanics

After completing this course, the students will be able to:

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe various types of constraints acting on a system.	Understand	9	0
C02	Describe conservation theorem and symmetry properties.	Understand	8	0
CO3	Apply Lagrange's theorem for simple situations.	Apply	10	0
C04	Solve the central force problem.	Apply	10	0
C05	Apply theory of small oscillations to study the normal modes of molecules like CO ₂ .	Apply	10	0
C06	Review the equations of motion in Poisson bracket form.	Understand	7	0
C07	Discuss Hamilton-Jacobi equations.	Understand	6	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO/PSO	PSO						
	1	2	3	4	5	6	7
C01	3	2	1				
CO2	3	2	1				
CO3	3	2	1				
CO4	3	2	1				
CO5	3	2	1				
C06	3	2	1				
C07	3	2	1				

3-High; 2-Medium; 1-Low

Module I

Constraints: types of constraints, difficulties associated with constraints, generalized coordinates Kinetic energy of a system in terms of generalized velocities. Calculus of Variation: Hamilton's Principle, techniques of the calculus of variations, Lagrange's equation from Hamilton's principle. Generalized momenta, cyclic coordinates. Conservation theorems and symmetry properties: Conservation of linear momentum, Conservation of angular momentum, Conservation of energy, Noether's theorem (no proof).

Module II

Applications of Lagrangian formulation: motion of a particle in space, Atwood's machine, bead sliding on rotating wire, simple pendulum, harmonic oscillator.

Central force problem: reduction to equivalent one body problem, equations of motion and first integrals, classification of orbits and stability condition for orbits. Kepler's laws.

Hamiltonian mechanics: Hamiltonian of a system, Hamilton's equations of motions, Canonical transformations, Generating functions.

Module III

Theory of small oscillations: equilibrium and potential energy, Normal modes, Normal modes of CO2 type molecules. Rigid body dynamics-Euler's angles - equations of motion, symmetric top, Corioli's force.

Module IV

Poisson Brackets: fundamental properties of PB, Equations of motion in Poisson Bracket form, PB and integrals of motion, Canonical invariance of PB, Lagrange brackets. Hamilton-Jacobi equation for Hamilton's principal function, Action angle variables in system of one degree of freedom.

- 1. Classical Mechanics, H Goldstein, C Poole and J Safko, 3rd edition, Addison Wesley (2005) (Text)
- 2. Classical Mechanics G Aruldhas, PHI learning, (2014) (Text)
- 3. Classical Mechanics- Rana and Joag, Tata McGrawHill (1992)
- 4. Classical Mechanics V B Bhatia, Narosa Pub.(1997)
- 5. Classical Mechanics of particles and rigid bodies Kiran C Gupta, Wiley Eastern Ltd.(1998)
- 6. Mechanics L. D Landau and E. N Lifshitz., Butterworth Heinemann, 3rd Ed (2002)
- 7. Classical Mechanics C R Mondal, Prentice Hall India, (2002)

23-351-0304 Mathematics III

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand curvilinear coordinate system	Understand	8	0
CO2	Apply curvilinear coordinate to physical systems with spherical and cylindrical symmetry	Apply	8	0
CO3	Understand the concept of vector space and the properties of vectors in linear vector space	Understand	8	0
C04	Apply concepts of vector space in physical systems	Apply	8	0
C05	Understand algebraic and transcendental equations, interpolation and simultaneous equations	Understand	6	0
C06	Apply numerical methods to solve algebraic and transcendental equations, simultaneous equations and perform differentiation and integration	Apply	8	0
C07	Understand initial value problems and boundary value problems	Understand	8	0
C08	Apply numerical methods to solve initial value and boundary value problems	Apply	6	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	1	2	1	1	
C02	3	2	1	1	2	1	1	
CO3	3	2	1	1	2	1	1	
CO4	3	2	1	1	2	1	1	
C05	3	2	1	1	2	1	1	
C06	3	2	1	1	2	1	1	
C07	3	2	1	1	2	1	1	
CO8	3	2	1	1	2	1	1	

3-High; 2-Medium; 1-Low

Module I

Curvilinear coordinates: description of curvilinear coordinate system, Line integral, Area element and area vector, Volume element and volume integral, Expression for the above in rectangular, Spherical and cylindrical coordinate systems, Conversion of unit vectors in spherical and cylindrical coordinates into rectangular coordinates and vice versa.

Expression for gradient, divergence, curl and Laplacian operator in rectangular and curvilinear coordinate systems.

Module II

Vector space: field, definition of vector space, Inner product, Norm, Schwart'z inequality, Dual vectors and dual space, Bra and Ket notations, Linearly independent and dependent vectors, Orthonormal vectors, Schmidt's othogonalisation, Basis, Dimension, Change of basis, Linear

operator, Adjoint and Hermitian operators, Matrix representation of operators, Similarity and unitary transformations, Eigenvalue and eigenvectors, Projection operator, Function space, Hilbert space.

Module III

Solution of algebraic and transcendental equations: iterative, bisection and Newton-Raphson methods, Solution of simultaneous linear equations using matrix inversion method, Interpolations: Newton's and Lagrange's formulas.

Numerical differentiation: First and second order derivatives, Forward, backward and central difference methods.

Numerical integration: Trapezoidal rule, Simpson's rule, Gaussian quadrature method, Least-square curve fitting, Straight line and polynomial fits.

Module IV

Numerical solution of ordinary differential equations, Initial value problems, Euler's method and Runge-Kutta methods.

Numerical solutions of partial differential equations, Boundary value problems, Finite difference method, Solution to Laplace and Poisson equations using finite difference method.

- 1. Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Academic Press, 2001 (Text).
- 2. Advanced Engineering Mathematics 10th Ed., Erwin Keryszig, Wiley, 2011 (Text).
- 3. Mathematical Methods for Physics and Engineering 3rd Ed., K. F. Riley, M. P. Hobson and S. J. Bence, Cambridge University Press, 2006 (Text).
- 4. Differential Equations and Linear Algebra, Stephen W. Goode and Scott A. Annin, Pearson, 2005 (Text)
- 5. Advanced Mathematics for Engineers Scientists, Murray R Spiegel, McGraw-Hill Education, 2009 (Text).
- 6. Differential Equations 3rd Ed., Shepley L. Ross, Wiley. 2007 (Text).
- 7. Introduction to Mathematical Physics, Harper Lee and Charlie Mackesy, Prentice Hall India, 1978 (Text).
- 8. Mathematical Methods in the Physical Sciences, 3rd. Ed., M. L. Boas, John Wiley, 2005 (Text).
- 9. Introductory Methods of Numerical Analysis- S S Sastry Prentice Hall India (2001) (Text)

23-351-0401 Thermal and Statistical Physics

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe thermodynamic systems and processes, employ laws of thermodynamics in relevant thermodynamic processes and predict the efficiency of heat engines based on Carnot's cycle.	Understand	8	0
CO2	Discuss entropy, thermodynamic functions, and TdS relations.	Understand	7	0
CO3	Apply Maxwell's thermodynamical relations ,Gibbs Helmholtz equations and classify phase transitions and critical phenomena.	Apply	9	0
C04	Relate thermal and electrical conductivity to Transport processes.	Analyze	6	0
C05	Discuss the concept of phase space as well as microstates and macrostates and explain the statistical origin of thermodynamics and its connection to entropy.	Understand	6	0
C06	Describe the concept of microcanonical, canonical, and grand canonical ensembles, compute various thermodynamic properties of ideal gas.	Apply	9	0
C07	Discuss Maxwell Boltzmann statistics and velocity distribution, and the theory of Brownian motion.	Understand	6	0
C08	Differentiate Fermi-Dirac and Bose-Einstein distribution and discuss the thermodynamics of blackbody radiation and Bose-Einstein condensation.	Understand	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
CO5	3	3						
CO6	3	3						
C07	3	3						
C08	3	3						

3-High; 2-Medium; 1-Low

Module I

Thermodynamic systems, thermodynamic equilibrium, thermodynamic variables, equation of states, laws of thermodynamics, thermodynamic process and cycles, application of first law to heat capacities, reversible and irreversible processes, conditions for reversibility, heat engine, Carnot's cycle and Carnot's engine, Carnot's theorem, Clausius theorem and inequality.

Entropy - change in entropy in reversible and irreversible processes, entropy and disorder, entropy of ideal gas. temperature- entropy diagram, entropy and second law of thermodynamics, Nernst Heat Theorem.

Module II

Thermodynamic functions- Enthalpy, Helmhlotz function, Gibbs function, Maxwell's thermodynamic relations, TdS relations-application of Maxwell's thermodynamical relations, Clausius-Clapeyron equation, thermodynamic potential, Gibbs Helmholtz equations.

Phase transitions and critical phenomena - phase diagram, first order phase transition, Clausius-Clapeyoron equation in the context of first order phase transition, Kirchhoff's equation, second order phase transition. Ehrenfest's equations, liquid helium and superfluidity.

Transport processes – momentum transport and viscosity, energy transport and thermal conductivity, charge transport & electrical conductivity.

Module III

Macroscopic and microscopic systems- general descriptions, quantum states and phase space, density distribution in phase space, Liouville's theorem, statistical origin of thermodynamics, entropy from the statistical mechanics point, ensemble, microcanonical, canonical and grand canonical ensembles.

Module IV

Distribution laws - classical and quantum statistics, Maxwell-Boltzmann distribution, velocity distribution, equipartition of energy, relationship between entropy and probability, partition function of monoatomic gas, Brownian motion.

Quantum Statistics- Bose-Einstein and Fermi-Dirac distributions, Bosons and Fermions, thermodynamic behavior of ideal Bose gas, thermodynamics of black body radiation, specific heats of solids, B-E condensation, F-D statistics. thermodynamic behavior of an ideal Fermi gas, electron gas in metals.

- 1. Thermal Physics-Kittel and Kroemer, W. H. Freeman; Second edition (1980) (Text).
- 2. Heat and Thermodynamics -D S Mathur, Sultan Chand and Sons, Revised Fifth edition (2004) (Text).
- 3. Heat and Thermodynamics Zeemansky and R. H. Dittman, Tata McGraw Hill (1997)
- 4. Thermal Physics: with Kinetic Theory, Thermodynamics and Statistical Mechanics- S.C. Garg, R.M. Bansal, C.K. Ghosh, TataMcGraw Hill Education Private Limited; 2nd edition (2017).
- 5. Heat and thermodynamics- Brijlal and Subramanium, S Chand (2008)
- 6. Statistical Mechanics K Huang, John Wiley & sons, 2nd edition (2008) (Text)
- 7. Modern Thermodynamics-D. Kondepudi. Ilya Prigogene, John Wiley sons (1998)
- 8. Statistical Mechanics- Kamal Singh, S. Chand and Co, New Delhi, 1st edition (1988)
- 2. Statistical Mechanics- R. K. Pathria, Butternorth-Heinemann, (1972)
- 3. Modern Physics- Beiser, Tata Mc Graw Hill, (2002)
- 4. Statistical Physics- Berkeley Physics Course Vol 5, F Reif, Tata McGraw Hill, 2011
- 5. Statistical Mechanics-R. K. Pathria, 2nd edition, Elsevier (2002)

23-351-0402 Mathematical Physics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand complex variables, analytical functions and power series	Understand	6	
CO2	Understand Cauchy integral formula and perform integrations	Understand	8	
CO3	Understand tensors and fundamental operations, covariant and contravariant tensors.	Understand	8	
CO4	Understand Christoffel symbols, curvature tensor and analysis of Cartesian tensors.	Understand	8	
C05	Understand Fourier series and Fourier transform and Laplace transform.	Understand	6	
C06	Utilizing Laplace transform methods to solve initial value problems, boundary value problems, and differential equations.	Apply	8	
C07	Understand special functions.	Understand	8	
C08	Apply special functions in solving differential equations.	Apply	8	
	Total Number of Hours	1	60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	1	2	1	1	
CO2	3	2	1	1	2	1	1	
CO3	3	2	1	1	2	1	1	
CO4	3	2	1	1	2	1	1	
C05	3	2	1	1	2	1	1	
C06	3	2	1	1	2	1	1	
C07	3	2	1	1	2	1	1	
C08	3	2	1	1	2	1	1	

³⁻High; 2-Medium; 1-Low

Module I

Functions of complex variables: Analytic functions, Power series, Taylor and Laurent series, Contour integration, Cauchy's theorem, Cauchy's integral formula. Integration involving branch cuts and branch points.

Module II

Tensor analysis: definition, Law of transformations, Rank of tensor, Covariant and contravariant tensors. Algebra of tensors, Lowering and raising of indices, Contraction of tensors, Fundamental tensors, Metrics, Covariant derivatives, Christoffel symbols, Curvature tensor, Cartesian tensors.

Module III

Fourier series: definition, Applications and properties. Fourier Transform: properties, Convolution theorem, Solving differential equations using FT. Laplace Transform: definition, Laplace Transform of simple functions, Solving differential equations using Laplace Transform. Initial value problems, Boundary value problems, Solving differential equations using transform methods.

Module IV

Sturm-Liouville problem, Hermitian differential equations, Beta and gamma function. Series solutions to differential equations, Partial differential Equations, Separation of variable method, Laplace Equation in spherical polar coordinates and spherical harmonics. Orthogonal functions, Legendre, Bessel, and Hermite and Laguerre differential equations and their solutions.

- 1. Tensor Calculus, David C. Kay, McGraw Hill; Revised Edition, 2011 (Text)
- 2. Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Academic Press, 2001 (Text).
- 3. Advanced Engineering Mathematics 10th Ed., Erwin Keryszig, Wiley, 2011 (Text).
- 4. Mathematical Methods for Physics and Engineering 3rd Ed., K. F. Riley, M. P. Hobson and S. J. Bence, Cambridge University Press, 2006 (Text).
- 5. Vector Analysis with an Introduction to Tensor Analysis Murray R Spiegel, Tata McGraw Hill (1975) Schaum Series (Text).
- 6. Advanced Mathematics for Engineers Scientists, Murray R Spiegel, McGraw-Hill Education, 2009 (Text).
- 7. Matrices and Tensors for Physicists, A W Joshi, New Age International (1995)
- 8. Introduction to Mathematical Physics, Harper Lee and Charlie Mackesy, Prentice Hall India, 1978 (Text).
- 9. Mathematical Methods in the Physical Sciences, 3rd. Ed., M. L. Boas, John Wiley, 2005 (Text).

23-351-0403 Electronics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the various configurations of transistors and familiarize with the working.	Understand	6	4
CO2	Understand the working of transistors as amplifiers and analyze the working and types of oscillators.	Analyze	6	4
CO3	Understand the working and frequency response of operational amplifiers.	Understand	6	4
CO4	Familiarize with the various operational amplifier circuits and its applications.	Apply	5	4
C05	Apply Boolean algebra in logic circuit design.	Apply	6	4
C06	Explain the working of combinational logic circuits and flip flops.	Analyze	5	4
C07	Identify the different types of modulation techniques – Amplitude, Frequency and Phase Modulation.	Analyze	6	4
C08	Define information theory, entropy, mutual information and describe the various error detection and correction techniques.	Analyze	5	2
	Total Number of Hours	I	45	30

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3		1				
CO2	3	3		1				
CO3	3	3		1				
CO4	3	3		1				
CO5	3	2		1				
C06	3	3		1				
C07	3	2		1				
C08	3	2		1				

³⁻High; 2-Medium; 1-Low

Module I

Bipolar Junction Transistors, PNP and NPN structures, Principle of operation, Relation between current gains in CE, CB and CC, Input and output characteristics of common emitter configuration, load line, Transistor as a switch, transistor as an amplifier, single stage and multistage amplifiers, circuit diagram and working of Common Emitter (RC coupled) amplifier with its frequency response, Concept of transistor biasing, Oscillator: crystal, optoelectronic, RC phase shift, Hartley, Colpitts, Wien Bridge.

Module II

Ideal Amplifier, Operational Amplifiers, frequency response of Op-Amps, fundamental circuits, voltage follower, inverting and non-inverting op-amps, summing and differential amplifiers, op-amp integrator, differentiator and its applications, op-amp peak detector, Applications of op-amps: filters, comparators, sample and hold circuit, waveform generators.

Module III

Digital fundamentals: Boolean algebra, Boolean theorems, Synthesis of Boolean functions, Karnaugh diagram, logic gates, fundamental logic operations, Universal gate (NAND & NOR) combinational logic circuits, half adder, full adder, half subtractor, full subtractor, multiplexer, demultiplexer, encoder, decoder, flip-flops, RS latches, level clocking, D latcher, D flip flops, JK flip flop, JK Master slave flip-flops. Registers and counters, shift register, controlled shift registers, ripple counters, decoding gates, synchronous counters, ring counters, changing the counter modulus, decade counters.

Module IV

Digital Communication: Amplitude Modulation, double and single sideband techniques, Frequency Modulation and demodulation techniques, bandwidth requirements, pulse communication, pulse width, pulse position, pulse code modulation, information theory, entropy, mutual information, error detection and correction techniques.

- 1. Basic Electronics, Mitchel Schultz and Grob, 12th edition, McGraw-hill Education, 2015.
- 2. Basic Electronics and Linear Circuits, N.N. Bhargava, Tata McGraw-hill Publishing Company Limited, 2008.
- 3. Principles of Electronics, V. K. Mehta & Rohit Mehta, 11th edition, S. Chand Publication, 2014.
- 4. Digital circuits and design, S. Salivahanan and S. Arivazhavan, Vikas Pub. 4th Edn, 2012.
- 5. Fundamentals of digital circuits, A. Anadan, PHI, 2006.
- 6. Communication Systems, A B Carlson, 5th edition, McGraw Hill, 2011.
- 7. Principles of Communication Systems, Herbert Taub, Donald Schilling & Gautam Saha, 4th edition, McGraw Hill, 2017.
- 8. Digital Communication, Nishanth Nazimudeen, 1st edition, Cengage, 2018.

23-351-0404 Quantum Mechanics I

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the shortcomings of classical mechanics and the emergence of quantum theory	Understand	6	0
C02	Illustrate the concept and significance of wave packets	Understand	9	0
CO3	Explain the properties and interpretations of wave functions	Understand	7	0
C04	Apply time-independent and time-dependent Schrödinger equations	Apply	8	0
C05	Discuss the fundamental postulates of quantum mechanics	Understand	8	0
C06	Apply linear operators and eigenfunctions in quantum mechanics	Apply	7	0
C07	Solve quantum mechanical problems, including particle in a box and potential barriers	Apply	10	0
C08	Apply the Schrödinger equation to systems with spherically symmetric potentials	Apply	5	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	1	1	2				
CO2	3	1	1	2				
CO3	3	1	1	2				
CO4	3	3	1	1	2	3		
CO5	3	1	1	1	1	1		
C06	3	1	1	1	2	2		
C07	3	3	1	1	2	2		
C08	3	3	1	1	2	1		

3-High; 2-Medium; 1-Low

Module I

Origin of quantum theory: Blackbody radiation, ultraviolet catastrophe, Planck's formulation of black body radiation, photoelectric effect, Einstein's quantum theory of photoelectric effect, Compton effect.

Wavelike properties of particles: matter waves, de Broglie hypothesis, Davisson and Germer experiment, the wave-particle duality.

Wave packets: localized wave packets, the uncertainty principle, consequences of the uncertainty principle, uncertainty relations, the motion of wave packets, propagation of wave packets without distortion, group and phase velocities.

Module II

Schrödinger wave function, Born's interpretation of wave functions, Schrödinger's equation for a particle subjected to forces, wave function and its interpretations, probability, probability current density and continuity equation, expectation values, Ehrenfest's theorem, admissibility conditions of wave functions, normalizations of wave functions, box normalization, time-dependent and time-independent Schrödinger equations, stationary states and superposition principle.

Module III

Postulates of Wave Mechanics, dynamical variables as operators, linear operators, commutator brackets, eigen functions and eigenvalues, Hermitian operators and their properties, orthogonality conditions, Schimidt's orthogonalization procedure, physical significance of eigenfunctions and eigenvalues, degeneracy, simultaneous measurability of observables, general uncertainty relations.

Representation in continuous bases: position and momentum representations in quantum mechanics, connecting position and momentum representations, matrix and wave mechanics.

Module IV

Applications of Schrödinger equation: particle in a box, square well potential with rigid walls, square well potential with finite walls, square potential barrier and quantum tunnelling, alpha decay, linear harmonic oscillator, particle in a spherically symmetric potential, separation of R, Θ and Φ equations, Hamiltonian of two interacting particles, rigid rotator, hydrogen atom, energy eigenvalues, hydrogen wave function, radial probability density functions and hydrogen atom orbitals.

- 1. Quantum Physics-Eisberg and Resnik, John Wiley Sons(2002) (Text)
- 2. Concepts of Modern Physics-Beiser, Tata McGraw Hill (2002) (Text)
- 3. Quantum Mechanics- G Aruldhas, Prentice Hall India (2004) (Text)
- 4. Quantum Mechanics: Concepts and Applications, Nouredine Zettili, John Wiley & Sons, (2001)
- 5. Principles of Quantum Mechanics -R. Shankar, Springer, (2014)
- 6. Quantum mechanics- Mathews and Venketesan, Tata McGraw Hill (2006)
- 7. Quantum Mechanics-Thankappan V K, New Age International, 2nd edition (2003)
- 8. Introduction to Quantum Mechanics David J Griffiths, Pearson, 3rd Edn, (2018)
- 9. Mastering Quantum Mechanics- Essentials, Theory and Applications, Barton Zwiebach, The MIT Press, Cambridge, Massachusetts (2022)

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Differentiate between the Schrödinger picture, Heisenberg picture, and interaction picture in	Understand	5	0
001	quantum mechanics	onderstand	5	Ū
CO2	Apply the operator method for solving the harmonic oscillator problem	Apply	10	0
C03	Predict eigenfunctions and eigenvalues of angular	Apply	8	0
03	momentum operators	Apply	0	0
C04	Understand Pauli Spin matrices and spin angular	Understand	7	0
	momentum			
C05	Apply time-independent and time-dependent	Apply	10	0
	approximation methods in quantum mechanics	11.5		
C06	Inspect transition rates in absorption/emission	Analyze	5	0
	processes		U	Ũ
C07	Understand Scattering theory and scattering cross	Understand	6	0
007	sections	onderstand	0	Ŭ
C08	Apply scattering theory to study scattering from	Apply	9	0
000	various potentials	прри	J	0
	Total Number of Hours		60	0

23-351-0501 Quantum Mechanics II

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8		
C01	3	2	1	1	1					
CO2	3	2	1	1	3					
CO3	3	3	1	2	2					
CO4	3	3	1	2	2	1				
C05	3	2	1	2	3	1				
C06	3	3	1	3	3	1				
C07	3	3	1	3	2	2				
C08	3	3	1	3	2	2				

3-High; 2-Medium; 1-Low

Module I

Parity operator, Solution of linear harmonic oscillator: Operator method, coherent states, matrix representation of creation, annihilation, number, position, and momentum operators of the harmonic oscillator. Pictures of quantum mechanics, Schrödinger picture, Heisenberg picture and interaction picture.

Module II

Orbital angular momentum, General formalism of angular momentum, eigenfunctions and eigenvalues of Jz and J2, matrix representation of angular momentum, geometrical representation of angular momentum, eigenfunctions and eigenvalues of Lz and L2. Spin angular momentum: general theory of spin, Pauli spin matrices.

Module III

Time independent perturbation-first order and second order correction, the stark effect, Degenerate perturbation theory; Variational method, hydrogen atom; WKB approximation, tunnelling through a potential barrier.

Time dependent perturbation theory: first order approximation, transition probability for constant and harmonic perturbations, Fermi's Golden rule.

Module IV

Scattering theory: scattering amplitude and differential cross section of spinless particles, partial wave analysis, Optical theorem, partial wave analysis for inelastic scattering, Born approximation, scattering by hard sphere.

- 1. Quantum Mechanics: Concepts and Applications, 2nd Edition, Nouredine Zettili, John Wiley & Sons, 2009 (Text)
- 2. Principles of Quantum Mechanics -R. Shankar, Springer, (2014) (Text)
- 3. Quantum Mechanics G Aruldhas, Prentice Hall India, (2004)
- 4. Quantum mechanics Mathews and Venketesan, Tata McGraw Hill (2006)
- 5. Modern Quantum Mechanics- J J Sakurai, Pearson Education, Revised Ed (2003)
- 6. Quantum Mechanics-Thankappan VK, New Age International (P)Ltd, 2nd edition (2003)
- 7. Mastering Quantum Mechanics- Essentials, Theory and Applications, Barton Zwiebach, The MIT Press, Cambridge, Massachusetts (2022)

Class Lab CO **CO Statement** CL Hrs Hrs Explain the concepts of electrostatics, electric C01 7 0 Understand field, electric potential and energy density Apply the concepts of electrostatics to solve the CO2 problems relating to electric Field and electric Apply 8 0 potential Apply the concepts of magnetostatics to solve the CO3 problems relating to magnetic field Apply 8 0 and Magnetic potential Solve problems related to electromagnetic C04 7 0 Apply boundary conditions Understand the concepts related to Faraday's law C05 Understand 8 0 and Maxwell's equations Analyse the propagation, reflection and C06 10 0 Analyse transmission of plane waves Explain magnetism as a relativistic phenomenon C07 7 0 Understand of electricity Explain the significance of gauge transformations C08 0 in physics, particularly in the Lorentz and Coulomb Understand 5 gauges **Total Number of Hours** 60 0

23-351-0502 Electrodynamics

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	3	1	1	1			
CO2	3	1	1	1			
CO3	3	1	1	1			
CO4	3	3	1	1			
CO5	3	1	1	1			
C06	3	1	1	1			
C07	3	3	1	1			
C08	3	3	1	1			

3-High; 2-Medium; 1-Low

Module I

Electrostatics: Electric field, Gauss's Law in integral and differential forms, applications of Guass's law, Scalar potential, Energy of continuous charge distribution, Poisson and Laplace equations, Boundary conditions and uniqueness theorem, Dielectrics, induced dipoles, polarization and field of a polarized object, Guass's law for dielectric media, Displacement field, linear dielectric and dielectric constant, energy and forces in dielectric systems.

Module II

Magnetostatics: Magnetic fields & magnetic forces, Biot-Savart law, Ampere's law, Applications of Amperes law, Magnetic vector potential, Magnetization, Torque and forces on magnetic dipoles, The field of a magnetized object, Ampere's law in magnetized material, Boundary conditions, Magnetic susceptibility and permeability.

Module III

Faraday's law of electromagnetic induction, energy and magnetic field, Maxwell's equation in vacuum and dielectric media, Solutions of Maxwell's equation in vacuum and dielectric media, Poynting's theorem, conservation of energy and momentum, Reflection and refraction of EMW at dielectric boundaries, Snell's law, total internal reflection, Brewster's angle. Electromagnetic waves in conductors, reflection at a conducting surface, frequency dependence of permittivity.

Module IV

Vector and Scalar potentials, gauge transformations- Lorentz and Coulomb gauges. Relativistic Mechanics- proper time, proper velocity, Compton scattering, Magnetism as relativistic phenomenon. Transformation of fields, the field tensor, four vectors, Maxwell's equation in tensor form.

- 1. Introduction to Electrodynamics, David J Griffiths, Cambridge University Press 4th edition (2020) (Text)
- 2. Classical Electrodynamics J.D Jackson, Wiley, 3rd Edition (2007) (Text)
- 3. The Feynman Lectures on Physics, Richard P Feyman, Vol 1&2, Narosa Publishing house (2008)
- 4. Concepts of Modern Physics, Arthur Beiser and Shobhit Mahajan, Tata Mc GrawHill (2009)
- 5. Electricity and Magnetism K K Tewari, S Chand & Company, 3rd Edition (2007)
- 6. Electricity and Magnetism D.N Vasudeva, S Chand & Company (2002)
- 7. Classical Electrodynamics- P S Sengupta, New Age International, 2nd Edition (2015)
- 8. Electromagnetic Theory and wave propagation- S N Ghosh, Narosa Publishers 2nd Ed (2002)
- 9. Introduction to special theory of relativity, R Resnick, Wiley India edition (2010)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the formation of fine and hyper-fine structure of spectral lines and the relative intensities of spectral lines.	Understand	8	
CO2	Utilize coupling schemes like LS coupling and jj coupling to determine spectral terms and term symbols based on electronic configuration.	Apply	7	
CO3	Analyze the Zeeman effect, distinguish between normal and anomalous Zeeman effect, and evaluate Zeeman Shift.	Analyze	8	
C04	Compare the classical and quantum interpretations of the Stark effect in Hydrogen.	Analyze	7	
C05	Describe the formation of rotational and vibrational spectra of molecules.	understand	8	
C06	Apply vibrational and IR spectroscopy for identifying simple molecular structure.	Apply	7	
CO 7	Utilize the Franck-Condon principle to interpret intensity of electronic transitions in diatomic molecules.	Apply	8	
CO 8	Determine the molecular structure using Raman and IR spectroscopy techniques.	Apply	7	
	Total number of hours		60	

CO-PSO Mapping

11 0										
CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8		
C01	3	2	1	1	1	1	1			
CO2	3	2	1	1	1	1	1			
CO3	3	3	1	1	1	1	1			
C04	3	3	1	1	1	1	1			
C05	3	2	1	1	1	1	1			
C06	3	3	1	1	1	1	1			
C07	3	3	1	1	1	1	1			
C08	3	3	1	1	1	1	1			
2	2 High 2 Modium 1 Low									

3-High; 2-Medium; 1-Low

Module I

Vector atom model-quantum numbers

Symmetry of atomic states, equivalent and nonequivalent electrons, normal and inverted atoms. Spectra of one electron systems: Expression for spin orbit interaction, fine structure of Hydrogen Atom, ionized Helium, alkali atoms, fine structure of doublet states- Sodium D1, D2 lines, Lande interval rule, Lamb shift, Intensity of spectral lines. Hydrogen spectra- Hyperfine structure.

Two electron systems: Spectral terms and term symbols based on electronic configuration. LS coupling, jj coupling, Pauli's exclusion principle, Hund's rule of multiplicity, selection rules, intensity rules

Module II

Zeeman effect: Normal and anomalous Zeeman effect, classical interpretation of normal Zeeman Effect, explanation based on vector atom model, Lande's g factor, Evaluation of Zeeman Shift, Zeeman effect in Sodium atom, experimental arrangement. Intensity distribution of Zeeman lines: BDO rule, Keiss and Megger's rule. Paschen- Back effect: Splitting of Sodium lines, selection rules, Zeeman and Paschen –Back effect in Hydrogen.

Stark effect : Experiment, Stark effect in Hydrogen, weak field and strong field effect: First order and second order stark effect in Hydrogen.

X-ray spectrum, continuous and characteristic X-ray spectra

Module III

Rotational spectra of diatomic molecules as rigid rotor, intensity of rotational lines, The effect of isotopic substitution, energy levels and spectrum of non-rigid rotor.

The vibrating diatomic molecule - simple harmonic oscillator, the anharmonic oscillator, the diatomic vibrating rotator - CO_2 and H_2O molecule. Interaction of rotation and vibrations, the vibrations of polyatomic molecules and their symmetry, the influence of rotation on the spectra of linear molecules

Module IV

Electronic spectra of diatomic molecules - Born-Oppenheimer approximation, vibrational coarse structure - progressions. Intensity of vibrational transitions – the Franck-Condon principle. Dissociation energy and dissociation products. Rotational fine structure of electronic-vibrational transitions - the Fortrat diagram. Predissociation.

Raman effect - classical theory, elementary quantum theory, pure rotational Raman spectra - linear molecules, vibrational Raman spectra polarization of light and Raman effect, structure determination by IR and Raman spectroscopy-simple examples, fundamentals of SERS.

- 1. Introduction to Atomic Spectra, H. E. White, McGraw-Hill Inc., US (1934). (Text)
- 2. Elements of Spectroscopy Gupta, Kumar and Sharma, Pragathi Prakashan Meerat, 6th edition (2011) (Text).
- 3. Fundamentals for Molecular Spectroscopy, 4th Ed., C. N. Banwell and E. M. McCash, McGraw Hill Education (2017) (Text).
- Molecular structure and Spectroscopy (2nd Edition), G. Aruldhas, Prentice Hall of India (2007).

23-351-0504 Biophotonics

CO	CO Statement	CL	Class	Lab	PSO
			Hrs	Hrs	
C01	Understand the basic theory and science of	Understand	8	0	1,2
	interaction of light with cells and tissues.				
CO2	Understand different light delivery systems	Understand	7	0	1,2
CO3	Understand fundamentals of optical	Understand	7	0	1,2
	imaging				
C04	Analyze different optical imaging	Analyze	8	0	1,2
	techniques				
C05	Understand different optical biosensors	Understand	10	0	1,2
C06	Understand photodynamic therapy	Understand	5	0	1,2
C07	Understand optical tweezers and analyze	Understand	7	0	1,2
	its applications				
C08	Analyze different tissue engineering	Analyze	8	0	1,2
	techniques using light				
	Total Number of Hours		60	0	

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
CO4	3	3	1				1	
CO5	3	3	1				1	
CO6	3	3	1				1	
C07	3	3	1				1	
CO8	3	3	1				1	

3-High; 2-Medium; 1-Low

MODULE I

Photobiology; interaction of light with cells with cells and tissues, Photo-process in Bio polymers human eye and vision, Photosynthesis; Photo-excitation - free space propagation, optical fibre delivery system, articulated arm delivery, hollow tube wave-guides.

Optical coherence Tomography, Fluorescence microscopy, resonance energy transfer imaging

MODULE II

Bio-imaging: Transmission microscopy, Kohler illumination, microscopy based on phase contrast, darkfield and differential interference contrast microscopy, Fluorescence, confocal and multiphoton microscopy.

Applications of bio-imaging; Bio-imaging probes and fluorophores, imaging of microbes, cellular imaging and tissue imaging

MODULE III

Optical Biosensors: Fluorescence and energy transfer sensing, molecular beacons and optical geometries of bio-sensing, Biosensors based on fibre optics, evanescent waves and interferometric

Flow Cytometry: basis, flurochromes for flow cytometry, DN Aanalysis. Laser activated therapy; Photodynamic therapy, photo-sensitizers for photodynamic therapy, two photon photodynamic therapy.

MODULE IV

Laser tweezers and laser scissors: design of Laser tweezers and laser scissors, optical trapping using non Gaussian optical beam, manipulation of single DNA molecules, molecular motors, semiconductor Quantum dots for bio imaging. Tissue engineering using light; contouring and restructuring of tissues using laser, laser tissue regeneration

Refences

- 1. Introduction to bio-photonics- P.N. Prasad Wiley Interscience (2003)
- 2. Biomedical Photonics A handbook editor Tuan.Vo Dinh (CRC Press) (2002)

23-351-0601 Laser Physics

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain line broadening mechanisms.	Understand	6	
CO2	Describe Planck's radiation law and processes of absorption and emission of radiation.	Understand	6	
CO3	Discuss the required conditions for laser action.	Understand	10	
CO4	Solve rate equations for two, three and four level systems.	Apply	10	
C05	Describe various laser cavity modes and its propagation.	Understand	10	
C06	Predict the stability of laser systems.	Apply	8	
C07	Describe various pulse shortening techniques and its use.	Understand	6	
C08	Analyse and apply the safety requirement of high power lasers.	Apply	4	
	Total Number of Hours	60	0	

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	
C01	3	3	1	2			1		
CO2	3	3	1	2			1		
CO3	3	3	1	2			1		
CO4	3	3	1	2			1		
C05	3	3	1	2			1		
C06	3	3	1	2			1		
C07	3	3	1	2			1		
C08	3	3	1	2			1		

3-High; 2-Medium; 1-Low

Module I

Decay of excited states, emission broadening and linewidth due to radiative decay, broadening due to collisional decay, Doppler broadening, Voigt profile, quantum mechanical description of radiating atoms, cavity radiations-Planck's law, absorption and stimulated emission, Einstein's coefficients.

Module II

Absorption and gain, population inversion, saturation intensity, development and growth of a laser beam, threshold requirements, laser gain saturation, laser output fluctuations, laser amplifiers, regenerative amplifiers, rate equations - two, three and four level systems, pumping pathways.

Module III

Laser cavity modes - longitudinal and transverse, Fabry-Perot cavity modes, Gaussian shaped transverse modes, stable curved mirror cavities - ABCD matrices, cavity stability criteria, Gaussian beams, Hermite-Gaussian mode, propagation of Gaussian beams using ABCD matrix

Module IV

Unstable resonators, Q-switching, Gain switching, Mode locking, pulse shortening using GVD, pulse compression with gratings and prisms, ultrashort pulse laser and amplifier system, ring lasers.

Laser systems: He-Ne laser, Argon ion laser, CO₂ laser, Free-electron laser, Ruby laser, Nd:YAG laser, Titanium sapphire laser.

- 1. Laser Fundamentals, W T Silfvast, Second Edition, Cambridge University Press, New Delhi 2008 (Text)
- 2. Lasers Fundamentals and Applications, K Thyagarajan and Ajoy Ghatak, Second Edition, Springer, New York, 2010 (Text)
- 3. Laser Physics, Peter W Milonni and Joseph H Eberly, Wiley, 2010
- 2. Principles of Lasers, Orazio Svelto, Fifth Edition, Springer, 2010
- 3. Lasers, Anthony E Siegman, Mill Valley, Calif.: University Science Books, 1986

23-351-0602	Fibre Optics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the theory of propagation of light in planar and cylindrical waveguides.	Understand	6	
C02	Describe the formation of modes in a planar optical waveguide.	Understand	6	4
CO3	Classify optical fibers based on their refractive index profiles.	Understand	3	4
C04	Examine the loss mechanisms in optical fibers and to compute various losses.	Analyze	6	4
C05	Compare different types of pulse broadening mechanisms in optical fibers.	Understand	6	
C06	Practice the use of various standard optical fiber connectors and couplers.	Apply	4	6
C07	Analyze various techniques for the testing of optical fibre systems.	Analyze	6	4
C08	Analyze the functioning of optical fiber sensors.	Analyze	8	8
	Total Number of Hours		45	30

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	1	1	2			1	
CO2	3	3	1	2			1	
CO3	3	1	1	2			1	
CO4	3	3	1	2			1	
CO5	3	1	1	2			1	
C06	3	3	1	2			1	
C07	3	1	1	2			1	
C08	3	3	1	2			1	

3-High; 2-Medium; 1-Low

Module I

Optical waveguides, numerical aperture, modes in planar waveguides, Goos-Hanchen effect, evanescent field, cylindrical fibres, step index and graded index fibres, single mode and multimode fibres, cut of wavelengths, integrated optics, channel waveguides, electro optic waveguides, i/p and o/p couplers, e-o and m -o modulators, applications of integrated optics - lenses, grating, spectrum analysers.

Module II

Transmission characteristics of optical fibres, attenuation, absorption and scattering losses, wavelengths for communication, bend losses, dispersion effects in optical fibres: material, waveguide dispersions, modal birefringence and polarization maintaining fibres, nonlinear effects in optical fibres: nonlinear losses, self-phase modulation, cross phase modulation, stimulated Raman scattering, stimulated Brillouin scattering.

Module III

Optical fibre measurements: attenuation, dispersion band width, refractive index profile. OTDR, testing of optical fibre systems, eye pattern techniques.

Fabrication and characterization of silica, polymer fibres and photonic crystal fibres, erbium doped fibres, fibre components, couplers, connectors, packaging, splicers, cables, fiber joints, fiber polishing, industrial, medical and technological applications of optical fibre.

Module IV

Fibre optic sensors: advantages of fibre optic sensors, intensity modulation and interference type sensors, intrinsic and extrinsic fibre sensors, wavelength modulated sensors, fibre Bragg grating and fibre long period grating sensors, distributed fibre optic sensors, polarisation modulation type sensors, Sagnac interferometer and fibre optic gyroscope, temperature, pressure, force and chemical sensors.

- 1. Optical Fibre Communication, J. M. Senior, Prentice Hall India, 1994 (Text)
- 2. An introduction to Fiber Optics, Ghatak and Thyagarajan, Cambridge University Press, 1998 (Text).
- 3. Optical Fibre Communication Systems, J. Gowar, Prentice Hall India, 1995
- 4. Fibre optic communication, J. Palais, Prentice Hall India, 1988.
- 5. Fundamentals of Fibre Optic Telecommunication, B. P. Pal., Wiley Eastern, 1994.
- 6. Integrated Optics, R. G. Hunsperger. Springer Verlag, 1998
- 7. Fundamentals of Fibre Optics, B. P. Pal, Wiley Eastern, 1994
- 8. Understanding Fiber Optics, J. Hecht, Pearson Edu. Inc, 2006.
- 9. Fibre Optic Sensors Principles and Applications, B. D. Gupta, New India Publishing, 2006.
- 10. Fibre Optic Communication Systems, 3rd Edition G.P. Agrawal, John Wiley and Sons, 2002

23-351-0603 Computational Methods in Optics and Photonics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand fundamental concepts in Python to solve mathematical problems.	Understand	4	0
CO2	Understand the basics of Mathematica in solving algebraic and differential equations.	Understand	8	0
CO3	Apply the knowledge of eigenvalue problems to analyze the band structure of photonic crystals.	Analyze	8	0
CO4	Apply ABCD matrix method for modelling optical systems.	Apply	8	0
C05	Understand the fundamentals of the FDTD method.	Understand	8	0
C06	Apply FDTD method to simulate the optical response of simple optical systems.	Apply	8	0
C07	Understand Finite Element Method.	Understand	8	0
C08	Apply FEM to simulate the optical response of simple optical systems.	Apply	8	0
	Total Number of Hours	•	60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	1	1	1	1	3	2	3	
CO2	1	1	1	1	3	2	3	
CO3	1	1	1	1	3	2	3	
CO4	1	1	1	1	3	2	3	
C05	1	1	1	1	3	2	3	
C06	1	1	1	1	3	2	3	
C07	1	1	1	1	3	2	3	
C08	1	1	1	1	3	2	3	

3-High; 2-Medium; 1-Low

Module I

Introduction to Mathematica: overview of Mathematica software and its capabilities. Basics of the Mathematica interface: notebook structure, cells, evaluation, and syntax. Solving algebraic equations, differential equations, and systems of equations in Mathematica. Using built-in functions such as Solve, NSolve, and DSolve.

Maxwell equations and the wave equation, introduction to time-harmonic Maxwell equations and the Helmholtz equation.

Module II

Solving eigenvalue problems in electromagnetism, propagation of light in photonic crystals and calculation of band structure. ABCD matrix and ray tracing: introduction to the ABCD matrix method for optical systems. Ray tracing using matrix methods and transfer matrix method.

Module III

Basic principles of FDTD: discretization of space and time, finite differences, and time-stepping. Spatial discretization: discretization of the electromagnetic field components (E and H fields) in space using finite differences. Temporal discretization and Yee grid, discretization of time using finite differences or central differences, staggered grid arrangement used in FDTD method. Placement of electric field components (E) at cell faces and magnetic field components (H) at cell edges.

Boundary Conditions in FDTD, implementing boundary conditions in FDTD simulations. Perfectly Matched Layer (PML) boundary conditions for absorbing boundaries.

Module IV

Finite Element Method and its relevance in optics and photonics. Basic concepts: discretization, variational formulation, and finite element modelling. Weak formulation of partial differential equations and its application in FEM. Implementing FEM for optical simulations.

- 1. Mathematica by Example, by Martha L. Abell and James P. Braselton, Academic Press Inc., 2007 (text)
- 2. Classical Electrodynamics, J. D. Jackson, 3rd Ed. Wiley (Text).
- 3. Principles of Nano Optics, Bert Hecht and Lukas Novotny, Cambridge University Press, 2012 (Text).
- 4. An introduction to Computational Physics, Tao Pang, 2nd Ed. Cambridge University Press, 2006 (Text)
- 5. Computational Physics, Mark Newman, Amazon Digital Services, 2012 (Text).
- 6. Absorption and Scattering of Light by Small Particles, Craig Bohren and Donald Huffman, John Wiley and Sons, 1998 (Text).
- 7. Computational Electrodynamics: The Finite-Difference Time-Domain Method, Allen Taflove and Susan C. Hagness, Artech House 1995, (Text).
- 8. David B Davidson Computational electromagnetics for RF and microwave engineering Cambridge University Press, 2011 (Text).
- 9. Computational Electromagnetics, Thomas Rylander, Par Ingelström, Anders Bondeson, Springer-Verlag New York, 2013 (Text).
- 10. The Mathematical Theory of Finite Element Method, Susanne C. Brenner and L. Ridgway Scott, Springer-Verlag New York Inc., 2007 (Text).

СО	CO Statement	CL	Class Hrs	Lab Hrs			
C01	Design optical magnifiers and achromatic doublets.	Apply	6	0			
CO2	Understand the working of telescopes and adaptive optical techniques.	Understand	9	0			
CO3	Illustrate the working of different types of spectrometers and the mounting techniques.	Understand	8	0			
CO4	Compare the spectrometers based on their performance.	Apply	7	0			
C05	Understand different methods in optical metrology.	Understand	9	0			
C06	Design velocimeters and vibrometers based on laser doppler techniques.	Apply	6	0			
C07	Describe the working of basic analytical instruments.	Understand	8	0			
C08	Design spectrometers for various applications.	Apply	7	0			
	Total Number of Hours						

23-351-0604 Optical Instrumentation

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1	1	
CO2	3	3	1	2	1	1	3	
CO3	3	3	1	2	1	1	1	
CO4	3	3	1	2	1	1	1	
CO5	3	3	1	2	1	1	3	
C06	2	3	1	2	1	1	1	
C07	3	3	1	2	1	1	1	
C08	3	3	1	2	1	1	1	
-		× 11 ×	-	-	-	-	•	•

3-High; 2-Medium; 1-Low

Module I

Lens systems: Principal and meridional rays, magnifiers, ophthalmic lenses, achromatic doublets and collimators, afocal systems, relay systems and periscopes, indirect ophthalmoscopes and fundus camera.

Telescopes: transmissive telescopes and resolution, reflecting telescopes, one-, two- and threemirror telescopes, astronomical telescopes, adaptive optics, space telescopes, field-aperture telescope.

Module II

Spectrometers: prism spectrometers, deviation and dispersion, mounting arrangements, Littrow and Wadsworth mountings, grating spectrometers, resolution and resolving power, mounting

arrangements, Paschen-Runge, Czerny-Turner and Fastie-Ebert mountings, the Rowland mounting, Eagle mounting, Fourier transform spectrometers based on interferometers, Michelson and Twyman-Green interferometer-based Fourier transform spectrometers, Fabry-Perot spectrometer, Mach-Zehnder and spherical Fabry-Perot interferometers.

Spectrometer configurations: single pass and double pass spectrometers, double monochromator spectrometers.

Comparison between resolution, resolving power, throughput and signal to noise ratio of different spectrometers.

Module III

Optical Metrology: range finders, optical RADAR, curvature and focal length measurement, Moiré technique, Talbot effect, thickness measurement, interferometric methods in small distance measurements, velocity and vibration measurements, velocity measurements using stroboscopic lamps, laser speckle photography and particle image velocimetry, laser Doppler velocimetry, optical vibrometers, different types of laser doppler vibrometers.

Module IV

Analytical Instruments: UV-Vis-IR spectrophotometers, Beer-Lambert's law, microwave and IR spectrometers, spectrofluorometers, FTIR spectrometer, Raman spectrometer.

- 1. Geometrical and instrumental Optics, Volume 25, edited by Daniel Malacara, Academic Press, (1988 (Text).
- 2. Handbook of Optical Engineering, Edited by Daniel Malacara and Brian J Thompson, Marcel Dekker Inc, 2001 (Text).
- 3. Fundamentals of Molecular spectroscopy, C N Banwell, McGraw-Hill Book Company, 4th edition, 2017 (Text).
- 4. Handbook of Analytical instruments, second edition, R S Khandpur, McGraw-Hill Education Private Limited (2006) (Text).

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the principles of measurement used in different sensing schemes.	Understand	8	
CO2	Compare the sensitivity of simple optical sensors.	Understand	6	6
CO3	Explain the application of important interferometric techniques in high precision measurements.	Understand	4	
C04	Analyze the features and applications of a variety of optical fiber sensors used for the sensitive measurements of various physical and chemical parameters.	Analyze	8	8
C05	Construct and study the response of some sensing systems and understand the basic elements required for the realization of sensors for a particular measurand.	Apply	8	8
C06	Distinguish various optical fibre sensors based on modulation.	Analyze	6	4
C07	Examine the role of optical micro-cavities for sensing applications.	Understand	2	4
C08	Explain some emerging sensors based on photonic crystal fibers and fiber loop ringdown spectroscopy.	Understand	3	
	Total Number of Hours	•	45	30

23-351-0606 Optical Sensor Technology

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	
CO1	3	1	1	2			1		
CO2	3	3	1	2			1		
CO3	3	1	1	2			1		
CO4	3	3	1	2			1		
CO5	3	3	1	2			1		
C06	3	3	1	2			1		
C07	3	3	1	2			1		
C08	3	3	1	2			1		

3-High; 2-Medium; 1-Low

Module I

Introduction to sensors, Active and Passive sensors, Sensor performance parameters, light beam as a sensing tool (optical sensor) - broad classification of optical sensors, photoelectric effect, photoconductivity, photodiode, phototransistor. Simple optical sensors - single and double optic

lever; Method of Triangulation; Projected fringe technique; Remote sensing using laser-lidar for atmospheric remote sensing, lidar equation.

Module II

Interferometry for precision measurements, two-beam interferometry- Michelson, Mach Zehnder, Sagnac interferometers and applications, fringe displacement and fringe counting; Homodyne interferometer, heterodyne interferometer, super heterodyne interferometry; Multiple beam interference,Fabry Perot etalon and applications, Electron speckle pattern interferometry; Photoelastic measurements; Moire technique.

Experiential Learning: Moire pattern- displacement and refractive index (liquid) measurement, radius of curvature, focal length of spherical lenses.

Module III

Light transmission in microbend optical fibres- microbend OFS- measurements with microbend sensors; Evanescent wave (EW) phenomenon – Absorption and fluorescence, Beer lambert law, absorption and complex index, evanescent wave FOS, chemical sensors using EWFOS, evanescent wave fluorescence based sensor; Surface Plasmon resonance based fiber sensor-principle and applications; Fibre Bragg grating and Long period grating sensor, Distributed fiber optic sensing and applications- OTDR and its applications, fully distributed & quasi-distributed systems; FO smart sensing-basic architecture and example

Experiential Learning:

Study the shift in absorption or fluorescence characteristics of dyes/nanoparticles with pH and concentration. Evanescent wave optical fiber sensor- U shaped, Tapered etc. fabrication and application to refractive index and chemical sensing application

Module IV

Interferometric FOS basic principles, interferometric configurations- component, and construction of interferometric FOS - Mach-Zehnder, Michelson, Sagnac & fiber gyro-open loop and closed loop biasing scheme, Fabry-Perot configurations – application of interferometric FOS examples Optical microcavities, Whispering Gallery Modes in Optical microcavities, Passive and Active WGM microcavities, Polymer optical fiber based WGM microcavities, WGM Microcavities based sensors. Photonic crystals and photonic crystal fiber sensors, fiber loop ringdown spectroscopy

Experiential Learning:

Michelson, Mach Zehnder fiber optic sensors (using 3 dB couplers) , Whispering gallery mode sensing using optical microcavities.

- 1. Optical Networks: A Practical Perspective 3rd Edition, R Ramaswamy and Kumar N. Sivarajan, Morgan Kaufmann Publishers, 2010, (Text).
- 2. WDM Optical Networks Concepts, Design and Algorithms, Sivaram Murthy and Mohan Guruswamy. Prentice Hall, 2001 (Text).
- 3. Understanding Optical Communications, by Harry J.R. Dutton (pdf version http://cs5517.userapi.com/u133638729/docs/3745fff272ed/Dutton_HJR_Understanding_ Optical_Communications.pdf)

- 4. Optoelectronic Packaging (Wiley Series in Microwave and Optical Engineering), Alan R. Mickelson, Nagesh R. Basavanhally, Yung-Cheng Lee, Wiley Blackwell, 1997.
- 5. WDM Technologies: Active Optical Components, Volume 1, By Niloy K. Dutta, Masahiko Fujiwara, Academic Press, 2002.
- 6. Clean Assembly Practices to Prevent Contamination and Damage to Optics, J.Pryatel, W.H. Gourdin (pdf version available at https://e-reports-xt.llnl.gov/pdf/328839.pdf).
- 7. Advanced Optical Wireless Communication Systems, Shlomi Arnon, John Barry, George Karagiannidis, Robert Schober, and Murat Uysal, Cambridge University Press, 2012.
- 8. Optical Wireless Communications System and Channel Modelling, Z. Ghassemlooy W. Popoola S. Rajbhandari, CRC Press, 2019.

23-351-0607 Photonic Crystals and Optical Metamaterials

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Summarize the fundamental concepts of electromagnetic waves in periodic structures, including the Bloch theorem and photonic band structure.	Understand	6	3
CO2	Explain the concept of bandgap engineering in 2D and 3D Photonic crystals, understanding how it influences the optical properties.	Understand	5	4
CO3	Apply the mixing rules to analyze the macroscopic effective parameters of metamaterials, considering the optical properties of metals and dielectrics.	Understand	6	3
CO4	Illustrate the optical magnetism in nature, examining the role of split-ring resonators in creating magnetic metamaterials.	Apply	6	4
C05	Explain the principles of nonlinear optics with metamaterials.	Understand	5	3
C06	Utilize the concepts of transformation optics to explain the electromagnetic cloak of invisibility.	Apply	6	3
C07	Discuss the principles behind super resolution with meta- lenses, examining how these lenses achieve subwavelength resolution in optical imaging.	Understand	6	5
C08	Evaluate the theoretical foundations and limitations associated with the concept of a perfect lens with subwavelength resolution.	Apply	5	5
	Total number of hours		45	30

CO-PSO Mapping

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8		
C01	3	3	1	3	1	1	2			
CO2	3	3	1	3	1	1	2			
CO3	3	3	1	3	1	1	2			
CO4	3	3	1	3	1	1	2			
C05	3	3	1	3	1	1	2			
C06	3	3	1	3	1	1	3			
C07	3	3	1	3	1	1	3			
C08	3	3	1	3	1	1	3			
-										

3-High; 2-Medium; 1-Low

Module I

Photonic crystals: Electromagnetic waves in periodic structures-Matrix theory of dielectric layered media, Bragg Grating,1D Photonic crystals — Bloch modes, Dispersion relation and photonic band structure.

Real and reciprocal lattices; 2D and 3D Photonic crystals; Bandgap engineering; Devices based on photonic crystals; Emerging Applications of Photonic Crystals.

Module II

Metamaterials: Macroscopic Effective Parameters, Optical properties of metals and dielectrics, Metal-Dielectric Composites and Mixing Rules-electric metamaterials-Optical Properties of Stratified Metal-Dielectric Composites-Periodic Array of Metallic Wires-Semicontinuous Metal Films-Magnetic Metamaterials-Split-Ring Resonators.

Module III

Negative-Index Metamaterials-Reversed Phenomena in Negative-Index Media-Optical negative index materials-General Recipe for Construction-Nonlinear Optics with Metamaterials-Second-Harmonic Generation and the Manley–Rowe Relations in Negative-Index Materials-Optical Parametric Amplification in Negative-index Materials.

Module IV

Super Resolution with Meta-Lenses-Perfect Lens with Subwavelength Resolution.

Transformation Optics and Electromagnetic Cloak of Invisibility-Cloaking by Coordinate Transformation.

Experimental Techniques-Fabrication of Two-Dimensional Optical Metamaterials-Characterization of Spectral Properties.

- 1. Fundamentals of Photonics, 3rd Edition. by Bahaa E. A. Saleh, Malvin Carl Teich (2019).
- 2. Fundamentals and Applications of Nanophotonics. by Joseph W. Haus (2016).
- 3. Optical Metamaterials: Fundamentals and Applications, W. Cai and V. Shalaev Springer (2010).
- 4. Optical waves in layered media, Pochi Yeh, Wiley Interscience publication (1988).
- 5. Photonic crystals: moulding the flow of light, John Joannopoulos, Joshua N. Winn, and Robert D. Meade, Princeton University press, Second Edition (2008).

23-351-0608 Fourier Optics and Optical Signal Processing

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the fundamental concepts of signals.	Understand	8	
CO2	Explain the properties of linear systems.	Understand	7	
CO3	Illustrate the difference between Fraunhofer and Fresnel diffraction.	Understand	7	
CO4	Apply the principle of diffraction to specific examples.	Apply	8	
C05	Utilize the Fourier transform property of the lens to predict image formation by a lens.	Apply	8	
C06	Distinguish between coherent and incoherent imaging systems and their transfer functions.	Analyze	7	
C07	Explain optical correlators and acousto-optic signal processing.	Understand	8	
C08	Illustrate advanced pulse shaping and processing techniques.	Understand	7	
	Total hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1	1	
C02	3	3	1	3	1	1	1	
CO3	3	3	1	2	1	1	1	
CO4	3	3	1	3	1	1	1	
C05	3	3	1	3	1	1	1	
C06	3	3	1	2	1	1	1	
C07	3	3	1	3	1	1	1	
C08	3	3	1	3	1	1	1	

3-High; 2-Medium; 1-Low

Module I

Signals: Characterization of a General signal, examples of signals, Spatial signal.

Linear Systems: Linearity and the Superposition Integral, Invariant Linear Systems, Transfer Functions.

General aspects of linear systems, Fourier transformation and spatial frequency spectrum, Linear space invariant and space variant systems. Sampling theory–Shannon-Whittaker sampling theorem, space-bandwidth product.

Module II

Fraunhofer and Fresnel diffraction, the Huygens-Fresnel Principle, Fresnel approximation, Positive and Negative Phases, Fourier transform in Fraunhofer diffraction. Examples of Fraunhofer diffraction- Rectangular aperture, Circular aperture.

Fresnel transform, Fresnel diffraction- square aperture, Fresnel propagation of a laser beam. Self imaging, Lau and Talbot effects.

Module III

Wave optics analysis of coherent optical systems. Thin lens as a phase transformation, the paraxial approximation, Fourier transform properties of lenses, different cases of image formation, Image formation in monochromatic illumination, lens law

Diffraction–limited coherent imaging, Fresnel zone plate, Operator approach to optical systems. Frequency response of diffraction-limited coherent imaging – the amplitude transfer function (ATF).

Optical Transfer Function (OTF), frequency response of a diffraction-limited incoherent imaging. Aberrations and their effects on frequency response. Comparison of coherent and incoherent imaging. Resolution beyond the diffraction limit.

Module IV

Optical Information Processing, Incoherent and Coherent Image Processing Systems, Optical Correlators, Acousto-Optic Signal Processing Systems, The Vanderlugt filter.

Pulse shaping and temporal processing, Holography and Diffractive Optics, Wave-front reconstruction, Computer Generated Holography.

- 1. Introduction to Fourier Optics, J. W. Goodman, McGraw-Hill. Third Edition, 2004
- 2. Statistical Optics, J. W. Goodman, Wiley Inter-science, 2000.
- 3. Fundamentals of photonics, Saleh and Teich, Wiley Interscience, 2007.
- 4. Optical signal processing, Anthony Vanderlugt, Wiley-Interscience

23-351-0701 Optoelectronics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyze the energy band structure of semiconductors to differentiate between direct and indirect bandgap materials.	Understand	4	4
CO2	Design basic circuits utilizing semiconductor principles, evaluating dynamic resistance and capacitance in pn junctions.	Apply	5	4
CO3	Evaluate LED materials, structures, and efficiencies to optimize luminous flux characteristics for various applications.	Analyze	5	6
C04	Apply LED principles in optical fiber communications, designing circuits for efficient data transmission.	Apply	6	0
C05	Apply the Shockley-Ramo theorem to assess external photocurrent in various photodetectors, considering noise characteristics.	Apply	5	4
C06	Analyze the characteristics and applications of advanced photodetector technologies, such as avalanche photodiodes and pin photodiodes.	Evaluate	5	6
C07	Assess the efficiencies and structures of various sensors and solar cells, optimizing performance for specific applications.	Analyze	5	6
C08	Apply principles of optical computing, including QSD arithmetic and symmetric coding, in designing efficient computational systems.	Apply	10	0
	Total Number of Hours		45	30

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
CO1	3	2			3		
CO2	3	2					
CO3	3	2		2			
CO4	3	2		2			
C05	3	2		1			
C06	3	2		1			2
C07	3	2		1			2
C08	3	2		1			

3-High; 2-Medium; 1-Low

Module I

Review of semiconductor concepts and energy bands, Semiconductor statistics, Extrinsic semiconductors, Direct and indirect bandgap semiconductors, pn Junction principles, pn junction reverse current, pn junction dynamic resistance and capacitances, recombination lifetime, pn junction band diagram, Heterojunctions.

Module II

Light-emitting diodes: Principles, Homo junction and hetero junction LEDs, Quantum well LEDs, LED materials and structures, LED efficiencies and luminous flux, Basic LED characteristics, LEDs for optical fibre communications, Phosphors and white LEDs, LED electronics, Semiconductor lasers.

Module III

Principle of the pn Junction photodiode, Shockley-Ramo theorem and external photocurrent, Absorption coefficient and photodetector materials, Quantum efficiency and responsivity, The pin photodiode, Avalanche photodiode, Heterojunction photodiodes, Schottky junction photodetector, Phototransistors, Photoconductive detectors, Basic photodiode circuits, Noise in photodetectors.

Image sensors: CMOS and CCD.

Module IV

Photovoltaic devices: Solar cells, Basic principles, Operating current and voltage, and Fill factor, Equivalent circuit of a solar cell, Solar cell structures and efficiencies.

Optical computing: QSD arithmetic, Symmetric coding, Optoelectronic implementation, Artificial neural networks, Optical implementation of neural networks, Optical architecture for pattern association, Optical logic gates, Optical backplane buses, Binary memory cell and Optical switches.

- 1. Optoelectronics and Photonics: Principles and Practices (Second Edition), S O Kasap, Pearson 2023 (Text)
- 2. Optoelectronic Devices and Systems (Second Edition), S C Gupta, PHI Learning Pvt Ltd 2015 (Text)
- 3. Optoelectronics Sensors and Instrumentation, M K Ghosh, Ed-Tech New Delhi 2018.
- 4. Semiconductor Optoelectronic Devices (second edition), Pallab Bhattacharya, Pearson 2017.

со	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe structural elements such as crystal planes and directions using standard notations.	Understand	8	0
CO2	Explain the concepts of reciprocal lattice and Brillouin zones.	7	0	
CO3	Apply the theory of lattice vibrations to determine thermal properties of solids.	Apply	8	0
CO4	Understand the theory, properties and classification of superconductors and explain flux quantization and Josephson effects.	Understand	7	0
C05	Explain the concept of density of states and occupation to determine macroscopic properties of solids.	Understand	5	0
C06	Formulate the problem of electrons in a periodic potential, analyze electron dynamics in semiconductors and the effect of doping on the electronic properties of semiconductors.	Analyze	10	0
C07	Outline the fundamental concepts of dielectric properties of materials- electric dipole moment electric flux density, polarizability and source of polarizability.	Understand	6	0
C08	Understand magnetic properties of materials and classify magnetic materials based on magnetic susceptibility.	Understand	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

<u></u>								
CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
CO4	3	3						
C05	3	3						
C06	3	3						
C07	3	3						
C08	3	3						

3-High; 2-Medium; 1-Low

Module I

Crystal symmetry and crystal systems: translational vectors and lattices, unit cell, Miller indices, symmetry operations, reciprocal lattices, hexagonal close packed structure, NaCl, CsCl, diamond and ZnS structures, X-ray diffraction and Bragg's law, powder diffraction, different types of bonding in crystals, Vandervaal's, ionic, covalent, metallic and hydrogen bonds.

Module II

Lattice vibrations: phonons, phonon spectra of monatomic and diatomic linear lattices, scattering of phonons by neutrons, experimental techniques to get phonon spectra, lattice heat capacity, Einstein's Model, Debye's Model.

Superconductivity:experimental survey, type I and type II superconductors, Meissner effect, heat capacity, energy gap, isotope effect, thermodynamics of the superconducting transitions, London equation, coherence length, BCS theory of superconductivity, flux quantisation, Josephson effects, SQUID, high temperature superconductors.

Module III

Band theory of solids: density of states, Fermi level, origin of bands, Bloch theorem, Kronig-Penney model, classification of materials based on band gap, electrical conduction in metals and semiconductors, effect of doping on Fermi level in semiconductors.

Module IV

Dielectric properties of solids: polarisability, local electric field of an atom, ferroelectric crystals, Clausius Mossotti relation, Lorentz – Lorenz formula, Curie-Weiss Law, magnetic properties of solids, dia, para and ferro magnetism, Langevin's theory of diamagnetism and paramagnetism, ferromagnetic domains, hysteresis, B-H curve, adiabatic demagnetization.

- 1. Solid State Physics C Kittel, 7 th edition, John Wiley (2004)(Text)
- 2. Introduction to Solids Azaroff, Tata McGraw Hill (1977)
- 3. Text Book of Solid State Physics S O Pillai, New age International (2002)
- 4. Problems in Solid State Physics S O Pillai, New age International (2003)
- 5. Solid State Physics- A J Dekker, MacMillian India Ltd (2005)
- 6. Solid State Physics- M A Wahab,2nd edition,Narosa Publishing House Pvt. Ltd(2005)
- 7. Solid State Physics, N W Ashcroft, N David Mermin, Harcourt, (1976)

23-351-0703 Nonlinear Optics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the concept of nonlinear susceptibilities, symmetries of nonlinear susceptibilities, index contraction and predict frequencies generated by nonlinear optical processes.	Apply	8	0
CO2	Analyze the theory of second order nonlinear effects - SHG, SFG DFG, OPO, Frequency Up/Down Conversion, principles of Phase-matching and Quasi Phase Matching conditions.	Analyze	7	0
CO3	Explain the concepts of Third order nonlinearity- third order susceptibility tensor, Degenerate four wave mixing.	Understand	9	0
C04	Explain the theory behind Optical Phase Conjugation and its applications in image processing and distortion correction.	Understand	6	0
C05	Explain the theory of nonlinear scattering mechanisms.	Understand	6	0
C06	Understand the theories related to Self Focusing , Self Induced Transparency, and the propagation of optical solitons.	Understand	9	0
C07	Explain the theory of nonlinear absorption processes - Saturable Absorption, Reverse Saturable Absorption, Two photon Absorption and its applications.	Understand	6	0
C08	Analyze the theory of nonlinear Fabry-Perot etalon, optical bistability and its applications.	Analyze	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3						
CO2	3	3						
CO3	3	3						
C04	3	3						
C05	3	3						
C06	3	3					2	
C07	3	3					2	
C08	3	3						

3-High; 2-Medium; 1-Low

Module I

Historical Overview of Nonlinear Optics, Non-linear polarization, physical origin of non-linear optical coefficients- Classical Anharmonic Oscillator Model, Miller's Rule, susceptibility tensors, Symmetries of nonlinear susceptibilities, Index contraction, d-matrix., Parametric and Non-parametric processes.

Propagation of EMW through nonlinear media, Coupled amplitude equations for second-order processes $\chi^{(2)}$, Phase Matching conditions, Quasi Phase Matching (QPM), second harmonic generation, sum and difference frequency generation, optical parametric processes (OPA and OPO), Frequency Up/Down conversion.

Module II

Third order nonlinearity: Third order susceptibility tensor, Degenerate four wave mixing, Phase conjugate optics- properties of phase conjugate light, Generation of phase conjugate light, FWM in optical Kerr media, coupled mode formulation, Resonators with OPC mirror, Imaging through distorting medium.

Module III

Nonlinear scattering processes - Stimulated Raman Scattering (SRS)-Quantum mechanical description of Raman scattering, Raman cross section and gain, SRS described by non-linear polarization, Anti Stokes Raman Scattering, Coherent Antistokes Raman Scattering (CARS). Self action effects- intensity dependent refractive index, Self-focusing effect, Self-induced transparency- pulse area theorem.

Module IV

Nonlinear absorption- Two photon Absorption (TPA), Multiphoton absorption, Applications of nonlinear absorption, saturable and reverse saturable absorbers, Z-scan theory of closed aperture and open aperture scan. Nonlinear Fabry- Perot etalon (NLF), NLF as a computing element, Optical Bistability, Optical logic gates.

- 1. Hand book of Nonlinear optics-Richard L Sutherland, (Second Edition), Marcel Dekker Inc,(2003) (Text).
- 2. Nonlinear optics- Robert W Boyd, Academic Press, Elsevier, Inc (Third Edition) (2008), (Text).
- 3. Photonics, Elemental and Devices- V V Rampal, Wheeler Publishing (1992).
- 4. Lasers and Nonlinear optics- B B Laud, Wiley Eastern 3rd Edition, (2004).
- 5. Optical Electronics in Modern Communications -A Yariv, Oxford University Press(5th Edition), (1997).
- 6. Nonlinear Optics- Y R Shen, John Wiley Sons (1991).
- 8. Nonlinear Fibre Optics- Govind P Agarwal, Academic Press, 4th Edition(2007).
- 9. Quantum Electronics- A Yariv, John Wiley Sons (1989).
- 10. Fundamentals of Photonics-B E A Saleh, M C Teich, John Wiley Sons, 2nd edition (2007).
- 11. Physics of nonlinear optics-Guang S He and Song H Lie, world scientific , London (1999).
- 12. Fundamentals of Nonlinear Optics- P.E.Powers, CRC Press(2011).

23-351-0706 Nanophotonics

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the basics of nanophotonics considering photon propagation under various interaction potentials.	understand	6	0
CO2	Explain the nanoscale optical interactions and apply nanoscale enhancement in near field optics and microscopy.	Apply	10	0
CO3	Explain the Quantum confinement effects in nanomaterials.	Analyze	8	0
CO4	Discuss nanostructural material behaviour and nanostructering techniques.	Analyze	8	0
C05	Explain various methods of nano- structure fabrication.	understand	7	0
C06	Characterization analysis of nanostructure size using experimental techniques.	Analyze	7	0
C07	Explain nanoplasmonics and photonic band gap nanostructures.	Apply	7	0
C08	Manipulate nanostructures to enhance secondary emission.	Analyze	7	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0								
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	2			1	
CO2	3	3	1	1			1	
CO3	3	3	1	2			1	
CO4	3	3	1	1	1		1	
CO5	3	2	1	2	1		1	
CO6	3	3	1	2	1		1	
C07	3	3	1	1			1	
C08	3	3	1	1			1	

3-High; 2-Medium; 1-Low

Module I

Introduction to Nanophotonics – Breaking through diffraction limit, evanescent waves and optical near- field generation. Nanophotonics for real-time qualitative innovation.

Foundations of Nanophotonics- Photons and electrons- similarities and differences, Free-space propagation confinement of photons and electrons, propagation through classically forbidden zone: Tunnelling.

Localization under a periodic potential: bandgap, cooperative effects for photons and electrons, Nanoscale optical interactions: nanoscale confinement of electronic interactions, nanoscale electronic energy transfer, near-field interaction and microscopy, nanoscale enhancement of optical interactions.

Module II

Quantum confinement nature: Quantum well, Quantum wires, Quantum dots and Quantum rings. Manifestation of quantum confinement: modification of optical properties, semiconductor quantum dots, Quantum confined stark effects, Dielectric confinement effects. Molecular nanotechnology and Quantum dot lasers.

Nano-structural material behaviour- nanoparticles, nano clusters, and nanocrystals. Nanomaterials and nano structuring techniques – Carbon nanotubes, single walled and multiwalled carbon nanotubes.

Module III

Manufacturing methods of nanomaterials: Top-down approach, Bottom-up approach, Combined Top-down and Bottom-up manufacturing.

Growth methods of Nanomaterials and nanoparticles – MBE, MOCVD, LPE, LAVD.

Characterization of Nanomaterials – X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), TEM, SEM, RHEED, EDS, SPM, STM.

Module IV

Nanoplasmonics: optical properties of metal-nano particles, size dependent absorption and scattering of coupled nanoparticles metal-dielectric core- shell nanoparticles, local electromagnetic fields in metal nanoparticles.

Photonic Crystals: Basic concepts: band gap and band structures in two and three dimensional lattices, periodic structures in nature, experimental methods of fabrication.

Plasmonic enhancement of secondary radiation: classification of secondary radiations, enhancement of emission and scattering of light, local density of states in plasmonic nanostructures.

Hotspots in plasmonic nanostructures, Raman-scattering enhancement in metal-dielectric nanostructures, luminescence enhancement in metal-dielectric nanostructures.

- 1. Nanophotonics- P N Prasad, Wiely Interscience(2003) (Text)
- 2. Principles of Nanophotonics- Motoich Ohtsu, KiyoshKohayish CRC Press (2012)
- 3. Nano materials Handbook- Ahemmed Bunaina, CRC Press , 2nd Edition (2009)
- 4. Nanostructured materials and Nanotechnology- Haro Singh Nalwa Academic Press (concise edition) USA (2002)

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Describe the importance of lasers in spectroscopy.	Understand	6	
CO2	Compare principles of photo acoustic and optothermal spectroscopy.	Analyze	6	
CO3	Enumerate the importance of ionization spectroscopy.	Analyze	8	
CO4	Discuss the difference between magnetic resonance and fluorescence spectroscopy.	Analyze	8	
C05	Describe various multiphoton spectroscopic processes.	Understand	8	
C06	Discuss the importance of Laser Raman Spectroscopy.	Understand	8	
C07	Analyze various techniques to measure ultra short pulses.	Analyze	8	
C08	Assess recent laser spectroscopic techniques for a particular use.	Evaluate	8	
	Total Number of Hours		60	0

23-351-0707 Laser Spectroscopy

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2			1	
CO2	3	3	1	2			1	
CO3	3	3	1	2			1	
CO4	3	3	1	2			1	
C05	3	3	1	2			1	
C06	3	3	1	2			1	
C07	3	3	1	2			1	
C08	3	3	1	2			1	
		- 1						

3-High; 2-Medium; 1-Low

Module I

Advantages of lasers in spectroscopy, Frequency Modulation, Intra-cavity Laser Absorption Spectroscopy, Cavity Ring-Down Spectroscopy, Fluorescence Excitation Spectroscopy, Photoacoustic Spectroscopy, Optothermal Spectroscopy.

Module II

Ionization Spectroscopy – photo-ionization, collision-induced and field ionization, Sensitivity of ionization Spectroscopy, Pulsed versus CW Lasers for photo-ionization, resonant two-photon ionization combined with mass spectroscopy, optogalvanic spectroscopy, laser magnetic resonance and Stark spectroscopy, laser induced fluorescence spectroscopy

Module III

Linear and nonlinear absorption, saturation spectroscopy, Polarization spectroscopy, Multiphoton spectroscopy, two-photon absorption spectroscopy, Doppler-Free Multiphoton Spectroscopy, Experimental techniques of linear Laser Raman Spectroscopy, Nonlinear Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy, Resonant CARS and BOX CARS, Surface Enhanced Raman Spectroscopy

Module IV

Time resolved laser spectroscopy, Measurement of Ultrashort Pulses, Streak Camera, Optical Correlator for Measuring Ultrashort Pulses, FROG Technique, SPIDER Technique, Lifetime Measurement with Lasers, Spectroscopy in the Pico-to-Attosecond Range, Applications, Laser Induced Breakdown Spectroscopy, Laser Cooling and trapping of atoms, Fluorescence Correlation Spectroscopy, Optical Frequency Combs

- 1. Laser Spectroscopy Vol. 2 Experimental Techniques, Wolfgang Demtröder, Springer Berlin Heidelberg (2008) (Text)
- 2. Femtosecond Optical Frequency Comb: Principle, Operation and Applications, Jun Ye, Steven T Cundiff, Springer New York, 2010
- 3. Photoacoustics and Photoacoustic Spectroscopy, A. Rosencwaig, Wiley Interscience, New York, 1980
- 4. Laser cooling and trapping, H J Metcalf and P Straten, Springer New York, 1999

23-351-0708	Quantum Optics and Quantum Computin	g
-------------	--	---

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand quantized electromagnetic field and the origin of number states.	Understand	7	0
CO2	Illustrate the concept of coherent states and squeezed states.	Apply	8	0
CO3	Examine optical coherence, photon correlation, and photon statistics.	Apply	10	0
C04	Summarize the squeezed light generation and applications.	Understand	5	0
C05	Analyse the concepts of hidden variable, entanglement and interferometric measurements.	Analyze	9	0
C06	Discover the interaction between atoms and quantised fields.	Analyze	6	0
C07	Explain the concept of qubits and quantum gates.	Analyze	7	0
C08	Classify various quantum algorithms and quantum hardware.	Analyze	8	0
	Total Number of Hours		60	0

CO-PSO Mapping

								-
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1		
CO2	3	3	1	2	1	2		
CO3	3	3	1	3	1	3		
C04	3	2	1	3	2	1		
CO5	3	3	1	2	2	1		
C06	3	3	1	3	3	3		
C07	3	3	1	1	3	1		
C08	3	2	1	1	3	1		

3-High; 2-Medium; 1-Low

Module I

Concept of density matrix and its properties: Quantization of EMF, Fock/Number states, Expansion in number states, Coherent States, Displacement operator, Squeezed States, Squeezing operator, Coherence properties of EMF: First order optical coherence, Photon correlation measurements, Hanbury Brown-Twiss experiments

Module II

Photon counting measurements, Classification of light by photon statistics, Photon bunching, Photon antibunching, Squeezed light: Generation and application of squeezed light, Resonant light atom interactions, Two level atom approximation, Rabi oscillations.

Module III

EPR argument, experimental studies, Bell's inequalities in quantum optics, nondemolition measurements, quantum coherence, Entanglement and interferometric measurements. Deflection of atoms by light, Kapitza- Dirac effect, Interaction between Atoms and quantized fields- dressed fields, Jaynes - Cummings model.

Module IV

Introduction to quantum bits (Qubits), Representation of qubits using Dirac notation, superposition and entanglement of qubits, basic quantum gates, no-cloning theorem and quantum teleportation, quantum algorithms, quantum computing hardware, applications of quantum computing.

- 1. Quantum Optics -D F Walls, G J Milburn Springer Verlag, 2nd edition (2008) (Text).
- 2. Quantum Optics an Introduction Mark Fox Oxford University Press (2004) (Text).
- 3. Introduction to Quantum Optics From the Semi-classical Approach to Quantized Light, Alain Aspect, Claude Fabre, Gilbert Grynberg, Cambridge University Press, 2010, (Text).
- 4. Introductory Quantum Optics Christopher Gerry and Peter L knight, Cambridge University, 2004.
- 5. Quantum computing for everyone -Chris Bernhardt, MIT Press, Cambridge, 2019 (Text).
- 6. Quantum Computation and Quantum Information: 10th Anniversary Edition, Michael A. Nielsen & Isaac L. Chuang, MIT Press, Cambridge, 2011.
- 7. Optical Coherence and quantum optics, Leonard Mandel, Emil Wolf, Cambridge University Press, 2nd Edition (2013).
- 8. Fundamentals of Quantum Optics- John R Klauder and ECG Sudarshan, Dover publication (2006).
- 9. Quantum Optics- Werner Vogel, Dirk-Gunnar Welsch, Wiley VCH, 3rd edition (2006).

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the frequency dispersion characteristics of dielectrics, conductors, and plasma.	Understand	6	0
CO2	Apply the concepts of the dielectric function of metals to study their roles in defining phenomena like bulk, surface, and localized modes in small particles.	Apply	6	0
CO3	Understand the inhomogeneous electromagnetic wave equation.	Understand	4	0
C04	Apply the knowledge of retarded fields to study the field of fast moving particles and the mechanism of radiation.	Apply	10	0
C05	Illustrate electromagnetic scattering and antenna theory, including multipole expansion and Dyadic Green's functions, as well as their application in analyzing electric fields.	Understand	8	0
C06	Apply Mie theory, antenna theory and Green's functions for the optical response of nanoscale structures.	Apply	8	0
C07	Understand computational methods in electromagnetics, including analytical solutions and numerical techniques like FDTD and FEM.	Understand	8	0
C08	Apply the analytical methods, FDTD and FEM to analyze electromagnetic response of simple systems.	Analyze	10	0
	Total Number of Hours		60	0

23-351-0709 Advanced Electromagnetic Theory

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2	1	1	2	1	2	
CO2	3	2	1	1	2	1	2	
CO3	3	2	1	1	2	1	2	
CO4	3	2	1	1	2	1	2	
CO5	3	2	1	1	2	1	2	
CO6	3	2	1	1	2	1	2	
C07	3	2	1	1	2	1	2	
C08	3	2	1	1	2	1	2	

3-High; 2-Medium; 1-Low

Module I

Frequency dispersion characteristics of dielectrics, conductors and plasma, simple model of dispersion, anomalous dispersion and resonant absorption, low frequency behaviour and conductivity, high frequency behaviour and plasma frequency. Dielectric function of metals, Drude model, Interband transitions, bulk plasmons, surface modes, localized modes in metallic particles, excitation of the localized modes.

Module II

Inhomogeneous electromagnetic wave equation, Retarded potentials and fields of a continuous charge distribution, Lienard-Wiechert potentials and electric and magnetic fields for a moving

point charge, electric dipole radiation, magnetic dipole radiation, radiation by an arbitrary source, radiation pattern and power radiated by a moving point charge, total power radiated by an accelerated charge: Larmor formula and its relativistic generalization, angular distribution of radiation emitted by an accelerated charge, radiation reaction force.

Module III

Electromagnetic scattering and antennas: multipole expansion of potential, field of a dipole in coordinate-free form and plotting it using Octave, electric field due to a uniformly polarized sphere and plotting it using Octave. Dyadic Green's functions, plotting the electric near-field and far-field of a radiating dipole using Green's functions.

Rayleigh and Mie scattering, Mie modes, Mie modes in dielectric particles and their antenna properties.

Dipole antenna, fundamental antenna parameters, half-wave dipole, antenna array and diffraction. Antenna modes in metallic particles of simple geometry, dark and bright modes.

Module IV

Computational methods in electromagnetics: simple systems having analytical solutions, field of a homogeneous sphere placed in a quasi-static electric field, Finite Difference Time-Domain method (FDTD), Finite Element Method (FEM).

- An Introduction to Computational Physics, Tao Pang, 2nd Ed. Cambridge University Press, 2006 (Text).
- 2. Classical Electrodynamics, J. D. Jackson, 3rd Ed. Wiley, 1998 (Text).
- 3. Principles of Nano Optics, Bert Hecht and Lukas Novotny, Cambridge University Press, 2012 (Text).
- 4. Antenna Theory: Analysis and Design, Constantine A. Balanis, 4th Ed. Wiley, 2016 (Text).
- 5. Computational Electrodynamics: The Finite Difference Time-Domain Method, Allen Taflove and Susan C. Hagness, Artech House 1995 (Text).
- 6. Computational Electromagnetics for RF and Microwave Engineering, David B Davidson, Cambridge University Press, 2011 (Text).
- 7. Computational Electromagnetics, Thomas Rylander, Par Ingelström, Anders Bondeson, Springer-Verlag, New York, 2013 (Text).

23-351-0807 Optomechanical Engineering

CO	CO Statement	CL	Clas s Hrs	Lab Hrs
C01	Understand the principles and materials required for opto-mechanical systems.	Understand	5	3
CO2	Understand basic drawings of optical components and systems.	Understand	6	3
CO3	Analyse the characteristics of the materials for opto-mechanical systems.	Analyse	5	4
C04	Analyse the integrated tolerance	Analyse	6	4
C05	Understand the design and mounting of small mirrors and lenses	Understand	6	4
C06	Understand the various kinematic constraints in mounting	Understand	5	4
C07	Model simple opto-mechanical mounts	Apply	6	4
C08	Understand various methods of fabricating opto- mechanical mounts	Understand	6	4
	Total Number of Hours		45	30

CO-PSO Mapping

11 0								
CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1	2	1	1		
CO2	3	3	1	2	1	2		
CO3	3	3	1	3	1	3	2	
CO4	3	2	1	3	2	1	2	
C05	3	3	1	2	2	1	2	
C06	3	3	1	3	3	3	2	
C07	3	3	1	3	3	1		
C08	3	2	1	3	3	1	2	
2	11. L O N	1	τ.					

3-High; 2-Medium; 1-Low

Module I

Basic computerized drawing, drawings of optical components and systems, dimensional tolerances and error budgets. Principles of opto mechanical design-structural and kinematic aspects- vibration control. Materials properties and selection criteria.

Module II

Opto-Mechanical Characteristics of Materials: Materials for opto-mechanical systems - physical, mechanical, thermal properties, dimensional stability, hysteresis, Inhomogeneity and anisotropy, temporal stability, integrated tolerance analysis.

Module III

Design and Mounting of Small Mirrors and lenses, Surface contact mounting, stress variations with surface radius, preload, material, temperature, cemented and air space doublet, linear, tilt

and rotary adjustment mechanisms, kinematic constraints and degrees of freedom, coupling methods, design guide lines.

Module IV

Analysis of the Opto-Mechanical Design Interface, structural analysis using Finite Element principles, modelling, analysis and optimization of simple opto-mechanical mounts, optimum design for minimum stress transfer, Fabrication methods.

- 1. Handbook of Optomechanical Engineering, Ahmad, Anees, CRC Press (2017).
- 2. Opto-Mechanical Systems Design, Volume 1_ Design and Analysis of Opto-Mechanical Assemblies, Paul Yoder, Daniel Vukobratovich, CRC Press (2015).
- 3. Optomechanical Systems Engineering, Keith J. Kasunic , Wiley (2015).

23-351-0808 Laser Systems and Laser Applications

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand about different type of laser systems.	Understand	8	0
C02	Understand about classification of lasers.	Understand	7	0
CO3	Understand about laser welding.	Understand	7	0
C04	Understand about material removal using lasers.	Understand	8	0
C05	Understand about lasers in chemistry.	Understand	8	0
C06	Analyze how lasers can be used to monitor ultrafast processes.	Analyze	7	0
C07	Understand about holography.	Understand	7	0
C08	Analyze applications of holography.	Analyze	8	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
C04	3	3	1				1	
C05	3	3	1				1	
C06	3	3	1				1	
C07	3	3	1				1	
C08	3	3	1				1	

³⁻High; 2-Medium; 1-Low

Module I

Classification of lasers- two level, three level and four level laser systems.

He-Ne laser, Ar -ion laser, Kr- ion laser, He-Cd laser, Copper vapour laser, CO $_2$ laser, N $_2$ laser, Excimer laser, X-ray laser, FEL laser.

Module II

Industrial applications of lasers, Laser welding, laser surface treatments, laser-induced material removal- cutting, scribing, marking.

Module III

Lasers in chemistry- laser isotope separation, laser induced chemical reactions- IR photochemistry. Ultrafast processes in Bio-molecules-monitoring, fast chemical reactions, study of photochemical processes and stimulation photochemical reactions.

Module IV

Holography, Hologram recording and reconstruction, thin and thick holograms, applications of holography in NDT and pattern recognition.

- Laser Fundamentals William T Silfvast, Cambridge University Press, 2nd Edition(2008) (Text).
- 2. Laser Processing and Analysis of Materials- W WDuley, Plenum Press (1983)(Text).
- 3. Industrial applications of lasers- John F Ready, Accademic Press, USA, 2nd Edition, ISBN 0-12-583961-8 (1997)(Text).
- 4. Lasers, Principles , Types and Applications- K R Nambiar, New Age International Delhi (2004), (Text).
- 5. Laser picosecond Spectroscopy and photochemistry of Biomolecules, V S Letokhov(Ed.), Adam Hilger, Bristal and Philadelphia (1987).
- 6. Lasers and Non-linear optics B B Laud, 3rd Edition, New Age International Private Limited, 2011.
- 7. Fundamentals of Photonics- B E Saleh , M Teich, John Wiley Sons 2nd Edition (2007).
- 8. Optical Holography- P Hariharan, Cambridge University Press, 2nd Edition (1996).
- 9. Lasers in Medicine H K KCobener, Wiley Sons.
- 10. Laser Cooling and Trapping H J Metcalf and P Van der Straten, Springer Verlag, (1999).
- 11. Optical computing D G Beitelson , MIT Press, (2000).
- 12. Laser Processing and Chemistry- Dieter Bauerle, Springer Verlag, 3rd Edition (2000).
- 13. Wave Optics and its applications, R S Sirohi, Orient Longmann (2001).
- 14. Spectroscopy, Luminescence and radiation centre in minerals-A S Marfunin, Springer Verlag, NY (1997).
- 15. Luminescence in solids-DRVij, Plenum Press, New York (1998).

Solar Cells

CO	CO Statement	CL	Class	Lab
			Hrs	Hrs
C01	Demonstrate the knowledge of semiconductor physics			
	for photovoltaic application.	Understand	6	6
CO2	Apply the principle of solar energy conversion and			
	calculate the conversion efficiency.	Apply	6	6
CO3	Explain the basics of thin film solar cell.	Understand	5	0
C04	Outline the principle on which dye sensitized solar cell			
	works on and its fabrication using novel dyes.	Understand	6	6
C05	Develop understanding of organic solar cell and BHJ			
	solar cells.	Understand	5	0
C06	Demonstrate the basics of perovskite solar cell and its			
	principle and fabrication method	Understand	6	0
C07	Understand the new field of research in solar cell by			
	using nanomaterials and band gap engineering of	Understand	6	6
	these nanomaterials.			
C08	Apply the understanding of connection of solar PV			
	modules and its design to analyze the PV module	Apply	5	6
	power output.			
	Total Number of Hours		45	30

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
CO1	3	3	1	2		1		
CO2	3	3	1	3		3		
CO3	3	3	1					
CO4	3	3	1	2		3		
CO5	3	3	1					
C06	3	3	1					
C07	3	3	1					
C08	3	3	1	1		3		

3-High; 2-Medium; 1-Low

Module I

Fundamentals of solar PV cells and systems: semiconductors as basis for solar cells materials and properties, charge carrier generation and recombination, P-N junction, I-V characteristics of solar cells in dark and light, principle of solar energy conversion, conversion efficiency.

Module II

Crystalline silicon and III-V solar cells, thin film solar cells: amorphous silicon, quantum dot solar cells.

Dye Sensitized solar cells, fabrication of dye sensitized solar cells, design of novel dyes, design of solid electrolytes materials, counter electrode engineering.

Module III

Introduction to organic solar cells, bulk heterojunction (BHJ) solar cells, morphology and charge separation in BHJ, design of low bandgap polymers.

Perovskite Solar Cells, fabrication of perovskite solar cells, photophysics in perovskite solar cells, stability in perovskite solar cells.

Module IV

Nanomaterials for photovoltaics, PV panels with nanostructures, band gap engineering and optical engineering

Solar PV modules: series and parallel connections, mismatch between cell and module, design and structure, PV module power output

- 1. Solar Photovoltaics: Fundamental, Technologies and Application, Chetan Singh Solanki, Edition 3, PHI Learning Pvt. Ltd., 2015.
- 2. Introduction to Photovoltaics, John Balfour, Micheal Shaw, Sharlene Jarosek, Jones & Bartlett Publishers, 2012.
- 3. Dye-sensitized Solar Cells (Fundamental Sciences, Chemistry), Kuppuswamy Kalyanasundaram, EPFL Press, 1st edition, 2010.
- 4. Organic Solar Cells: Theory, Experiment, and Device Simulation, Wolfgang Tress, Springer Cham, 2014.
- 5. Perovskite Solar Cells: Properties, Application and Efficiency, Muruli Banavoth, Nova science publishers, 2019.
- 6. Nanostructured materials for solar cell application, Katsuaki Tanabe, MDPI books, 2022.

23-351-0901	Industrial Photonics
-------------	-----------------------------

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand various fiber optic components used in optical communication industry.	Understand	8	6
CO2	Understand the role of active optical components in optical communication.	Understand	6	
CO3	Understand different optical networking terminologies.	Understand	2	8
C04	Understand various physical network topologies.	Understand	8	
C05	Compare existing wireless access schemes.	Analyze	8	
C06	Analyze the nature of optical wireless channel.	Analyze	8	
C07	Analyze the role of various tools for fiber optic assembly.	Analyze	2	8
C08	practice the use of fusion splicer to make permanent fibre joints.	Apply	3	8
	Total Number of Hours		45	30

CO-PSO Mapping

PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
3	3	1				1	
	3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1	3 3 1	3 3 1 Image: Constraint of the second	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3-High; 2-Medium; 1-Low

Module I

Optical components for communication, theory and principles of operation, Directional couplers, Variable Optical Attenuator (VOA), Polariser, Polarisation controller, isolators, circulators, multiplexers, wavelength filters, fiber gratings, Arrayed Waveguide Grating (AWG), Dielectric Thin-Film Filters, Active Optical Components, Tunable light sources, Optical switches, Optical amplifiers.

Module II

Introduction to optical networks, Optical network evolution and concepts: Optical networking terminology, Optical network node and switching elements, Layers of optical network,

SDH/SONET Layering, Frame structure, Physical network topologies, Network protection, Access networks, Passive Optical Networks, Optical Interconnects, Data Centers.

Module III

Existing wireless access schemes, Potential optical wireless communication (OWC) application areas, Optical sources, detectors, Nature of optical wireless channel, Hardware aspects of receiver-amplifier in the indoor channel environment, visible light communication, LiFi technology.

Module IV

Fiber Optic Assembly: Reliability requirements, Fiber Optic Standards, Assembly environment:clean rooms, classification- Tools for Fiber optic assembly- strippers, cleavers-Instruments for test purpose- IL Meter, BR Meter, Optical Spectrum Analyzer, Optical power meters, OTDR, Fiber optic Sources- Fiber joints-connectors, splices, Fusion splicers-Fiber polishing-Fiber cable design and structures- Photonic Packaging-Passive and active component packaging.

- 1. Optical Networks: A Practical Perspective 3rd Edition, R Ramaswamy and Kumar N. Sivarajan, Morgan Kaufmann Publishers, 2010, (Text).
- 2. WDM Optical Networks Concepts, Design and Algorithms, 2002 Sivaram Murthy and Mohan Guruswamy. Prentice Hall, 2001 (Text).
- 3. Understanding Optical Communications, by Harry J.R. Dutton (pdf version http://cs5517.userapi.com/u133638729/docs/3745fff272ed/Dutton_HJR_Understanding_ Optical_Communications.pdf)
- 4. Optoelectronic Packaging (Wiley Series in Microwave and Optical Engineering), Alan R. Mickelson, Nagesh R. Basavanhally, Yung-Cheng Lee, Wiley Blackwell, 1997.
- 5. WDM Technologies: Active Optical Components, Volume 1, By Niloy K. Dutta, Masahiko Fujiwara, Academic Press, 2002.
- 6. Clean Assembly Practices to Prevent Contamination and Damage to Optics, J. Pryatel, W.H. Gourdin (pdf version available at https://e-reports-xt.llnl.gov/pdf/328839.pdf).
- 7. Advanced Optical Wireless Communication Systems, Shlomi Arnon, John Barry, George Karagiannidis, Robert Schober, and Murat Uysal, Cambridge University Press, 2012.
- 8. Optical Wireless Communications System and Channel Modelling, Z. Ghassemlooy W. Popoola S. Rajbhandari, CRC Press, 2019.

23-351-0904	Quantum Communication
-------------	-----------------------

со	CO Statement	Class Hrs	Lab Hrs	
C01	Analyze the principles of quantum tunnelling and its significance in quantum computing.	Analyze	7	0
CO2	Identify basic applications of the Bloch sphere in visualizing qubit states.	Apply	6	0
CO3	Apply knowledge of qubit metrics to analyze and interpret experimental results, such as spin relaxation time and decoherence time.	Apply	6	0
C04	Discuss the practical implications of utilizing specific qubit modalities in quantum computing applications.	8	0	
C05	Analyze quantum circuits for specific computational tasks, incorporating quantum gates and entanglement.	Analyze	7	0
C06	Evaluate the significance of DiVincenzo's criteria in assessing the feasibility and effectiveness of quantum computation systems.	Evaluate	8	0
C07	Describe the significance of the FPR paradox and		9	0
C08	Demonstrate an understanding of basic principles		9	0
	Total Number of Hours		60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	2		1				
CO2	3	2		1				
CO3	3	2		1				
CO4	3	2		1				
CO5	3	2		1				
C06	3	2		1				
C07	3	2		1				
C08	3	2		1				
	U 1 0 1	1 1 1						

3-High; 2-Medium; 1-Low

Module I

Quantum tunnelling, Stern and Gerlach experiment, Bloch sphere representation, Qubit rotations, Projective measurements, The vocabulary of quantum computing, Classical computers, Qbits and usability, Noisy intermediate scale quantum technology.

Module II

Qbit Metrics: Spin relaxation time, Dephasing time, Decoherence time, Hann echo, Ramsay experiment, Gate time, Gate fidelity.

Qbit Modalities: Trapped ion qubit, Superconducting transmons, Topological qubits, Quantum dots, Dilution refrigerator.

Module III

Quantum circuits, Quantum gates, The compute stage, Quantum entanglement, No-cloning theorem, Quantum teleportation, Quantum interference, Phase kickback, DiVincenzo's criteria for quantum computation.

Module IV

EPR paradox, Density matrix formalism, Von Neumann entropy, Entangled photons, Quantum communication, quantum channel, Quantum communication protocols, RSA security.

- 1. Fundamentals of Quantum Computing: Theory and Practice, V Kasirajan, Spinger Switzerland, 2021.
- 2. Quantum Computation and Quantum Information, Michael A. Nielsen and Isaac L. Chuang, Cambridge University Press, 2010.
- 3. Quantum Information Theory and the Foundations of Quantum Mechanics, Christopher G. Timpson, Cambridge University Press, 2013.
- Introduction to Topological Quantum Matter & Quantum Computation, Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, Cambridge University Press, 2013.

23-351-0905 Ultrafast Optics

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Analyse the significance and applications of ultrashort laser pulses.	Analyze	7	0
CO2	Demonstrate proficiency in Electric Field Autocorrelation and Cross-Correlation Measurements for pulse analysis.	Apply	6	0
CO3	Evaluate advanced techniques like Frequency- Resolved Optical Gating for pulse characterization.	Apply	6	0
CO4	Analyze the effects of Group Velocity Dispersion on pulse propagation and optical components.	Analyze	8	0
C05	Evaluate Ultrafast Nonlinear Optics phenomena, including Forced Wave Equation and Modulational Instability.	Analyze	7	0
C06	Analyze Pump–Probe techniques for time-resolved spectroscopy.	Evaluate	8	0
C07	Evaluate principles of Terahertz Time-Domain Electromagnetics, including pulse generation and spectroscopy.	Understand	9	0
C08	Analyze Acousto-optic Dispersive Filters, understanding their advantages in pulse shaping.	Analyze	9	0
	Total Number of Hours		60	0

CO-PSO Mapping

11 0							
CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7
C01	3	3	1	1			
CO2	3	3	1	1			
CO3	3	3	1	1			
CO4	3	3	1	1			
C05	3	3	1	1			
C06	3	3	1	1			
C07	3	3	1	1			
C08	3	3	1	1			
3-High: 2-Medium: 1-Low							

3-High; 2-Medium; 1-Low

Module I

Introduction to ultrashort laser pulses: significance and application of ultrashort pulses, overview of ultrashort pulse generation techniques. Introduction to Ultrashort Pulse Generation Through Mode-Locking.

Solid-State Laser Mode-Locking Using the Optical Kerr Effect: Nonlinear Refractive Index Changes, Self-Amplitude Modulation, Self-Phase Modulation, and Group Velocity Dispersion, Additive Pulse Mode-Locking, Kerr Lens Mode-Locking

Module II

Ultrashort Pulse measurement method: Electric Field Autocorrelation Measurements, Electric Field Cross-Correlation Measurements and Spectral Interferometry. Correlation Measurements Using Second-Harmonic Generation, Chirped Pulses and Measurements in the Time–Frequency Domain. Frequency-Resolved Optical Gating and Pulse Measurements, Pulse Measurements Based on Frequency Filtering.

Module III

Group Velocity Dispersion, Dispersion of Optical Components, Measurements of Group Velocity Dispersion.

Ultrafast Nonlinear Optics: Forced Wave Equation in Frequency and Time Domain, SHG with pulse, three wave interaction, propagation equation for nonlinear refractive index media, Self-Phase modulation, pulse compression, Modulational instability, solitons and Higher order propagation effects.

Module IV

Fourier Transform Pulse Shaping, Direct Space-to-Time Pulse Shaping, Acousto-optic Dispersive Filters and their advantages. Chirp Processing and Time Lenses, Ultrashort-Pulse Amplification. Ultrafast Time-Resolved Spectroscopy: Degenerate Pump–Probe Transmission Measurements, Nondegenerate and Spectrally Resolved Pump–Probe. Generation and Measurement of Terahertz Pulses, Terahertz Spectroscopy and Imaging

- 1. Ultrafast Optics by Andrew Weiner (John Wiley & Sons, 2009) (Text).
- 2. Principles of Lasers by Orazio Svelto (5th ed., Springer, 2010).
- 3. Nonlinear Optics by Robert Boyd (3rd ed., Academic Press, 2008).
- 4. Ultrafast Optics by Franz X. Kärtner (from MIT course 6.638 offered in Fall 2008).

23-351-0906 Plasma Physics

CO	CO Statement	CL	Class Hrs	Lab Hrs
C01	Explain the concept of plasma parameters.	Understand	6	
CO2	Analyse the dynamics of charged particle in Electric and magnetic field.	Analyze	6	
CO3	Discuss the drift of charged particles under combinations of fields.	Understand	8	
CO4	Explain the dynamics of charged particles under time varying fields.	understand	8	
C05	Illustrate the kinetic and fluid description of plasma.	Analyze	8	
C06	Explain plasma instabilities and its classification.	Understand	8	
C07	Discuss the technical application of plasma.	Understand	8	
C08	Explain the laser produced plasma and its diagnostics.	Understand	8	
	Total Number of Hours	•	60	0

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8
C01	3	3	1				1	
CO2	3	3	1				1	
CO3	3	3	1				1	
C04	3	3	1				1	
C05	3	3	1				1	
C06	3	3	1				1	
C07	3	3	1				1	
C08	3	3	1				1	

3-High; 2-Medium; 1-Low

Module I

Plasma State: Definition of Plasma, concept of plasma temperature, Debye shielding, quasineutrality, plasma parameters, plasma approximation, natural existence of plasma, application of plasma, dynamics of charged particles in electro-magnetic fields.

Module II

Drift of charge particle under different combination of electric and magnetic field, crossed electric and magnetic field, homogeneous electric and magnetic field spatial and time varying electric and magnetic field.

Module III

Kinetic theory of Plasma, Vlasov equations, solution of linearized Vlasov equation, Langmuir waves, Ion-sound waves, wave-particle interaction and Landau damping. Boltzmann equation, Saha equation, Boltzmann's H Theorem.Maxwell velocity distribution conducting fluids, fundamental equation of magneto hydrodynamics (MHD), magnetic confinement, Plasma instabilities and classification.

Module IV

Thermonuclear fusion, Requirements for fusion plasmas- confinement, Tokamak fusion reactors, dusty plasma in laboratory and space, waves in dusty plasma. Laser plasma interaction, Inertial confinement, High-harmonic generation, Laser wakefield electron accelerator, X-ray laser.

- 1. Fundamentals of Plasma Physics, J A Bittencourt, Third Edition, Springer, New York, 2004 (Text).
- 2. Introduction to Plasma Physics and Controlled Fusion, Francis F Chen, Second Edition, Plenum, New York ,1984 (Text).
- 3. Fundamentals of Plasma Physics, Paul M Bellan, Cambridge University Press, 2006.
- 4. Introduction to Plasma Theory, D R Nicholson, John Wiley & Sons, New York, 1983.
- 5. The Physics of Laser Plasma Interaction, W L Kruer, Cambridge University Press, 1988.

23-351-0907	Microscopic Techniques
-------------	------------------------

СО	CO Statement	CL	Class Hrs	Lab Hrs
C01	Understand the basic concepts of instrumentation of optical microscopy.	Understand	7	
CO2	Evaluate the designs and specifications of different elements of an optical microscope.	Analyze	8	
CO3	Interpret phase contrast, dark-field, and polarization microscopy.	Understand	7	
C04	Analyze confocal, two-photon, multi-photon and laser scanning microscopic techniques.	Analyze	8	
C05	Compare super-resolution microscopy techniques for enhanced resolution and application-specific selection.	Apply	8	
C06	Analyze classical resolution limits and apply super- resolution principles to specific microscopy techniques.	Analyze	7	
C07	Understand resolution, electron-matter interaction, and instrument limitations of electron microscopes.	Understand	7	
C08	Apply scanning probe microscopy basics, demonstrating understanding of electron tunneling, atomic forces, and their application on surfaces.	Apply	8	
	Total Number of Hours	60	0	

CO-PSO Mapping

CO\PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6	PSO 7	PSO 8	
C01	3	3	1	2	1	1	2		
CO2	3	3	1	2	1	1	2		
CO3	3	3	1	2	1	1	3		
CO4	3	3	1	2	1	1	3		
CO5	3	3	1	2	1	1	3		
C06	3	3	1	2	1	1	3		
C07	3	3	1	2	1	1	2		
C08	3	3	1	2	1	1	3		
2 High 2 Madium 1 Low									

3-High; 2-Medium; 1-Low

Module I

Optical components of a light microscope, aperture and image plane, Koehler illumination, microscope illuminators, filters, effect of light on living cells, designs and specifications of objective lenses, condensers, oculars, microscope slides and cover slips.

Diffraction image of a point source of light, Abbe's theory of image formation in the microscope, numerical aperture, spatial resolution, depth of field and depth of focus, optimizing the microscope image.

Module II

Phase contrast microscopy: the behaviour of waves from phase objects in bright-field microscopy, the role of differences in optical path lengths, optical design of the phase contrast microscope, interpreting the phase contrast image.

Dark-field microscopy: theory, image interpretation

Polarization microscopy: optics of the polarizing microscope, retardation plates, Sénarmont compensator, Brace-Koehler compensator.

Fluorescence Microscopy: physical basis of fluorescence, properties of fluorescent dyes, autofluorescence of endogenous molecules, arrangement of filters and the epi-illuminator, objective lenses and spatial resolution.

Confocal microscopy: optical principle of confocal imaging, advantages of confocal laser scanning microscopy.

Two- and multi-photon laser scanning microscopy.

Module III

Super resolution microscopy: classical resolution limit, near-field optical microscopy, I⁵M microscopy, 4Pi microscopy, stimulated emission depletion (STED) microscopy, structured illumination spectroscopy, photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and fluorescent photoactivation localization microscopy (FPALM).

Module IV

Transmission and scanning electron microscopy: use of electrons for microscopy, resolution, interaction of electron with matter, depth of field and depth of focus, limitations of TEM, STEM, basic TEM instrumentation.

Scanning probe microscopy: basic principles, electron tunnelling, principles of atomic forces, theory of scanning tunnelling microscopy, metal and semiconductor surfaces.

- 2. Fundamentals of Light Microscopy and Electronic Imaging, Douglas B. Murphy and Michael W. Davidson, second edition, Wiley-Blackwell, 2013.
- 3. Transmission Electron Microscopy: A Textbook for Materials Science, David B. Williams and C. Barry Carter, Springer; 2nd edition, 2009.
- 4. https://zeiss-campus.magnet.fsu.edu/articles/superresolution/introduction.html.
- 5. Super resolution microscopy, Udo J. Birk, Wiley-VCH, 2017.
- 6. https://www.frontiersin.org/articles/10.3389/fchem.2021.746900/full.
- 7. Super resolution optical microscopy: The quest for enhanced resolution and contrast, Barry R. Masters, Springer Series in Optical Sciences, 2020.
- 8. Scanning probe microscopy and spectroscopy: theory, techniques, and applications second edition, edited by Dawn A. Bonnell, Wiley-VCH, 2001.